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Since the majority of me

Philip Larkin

Since the majority of me
Rejects the majority of you,
Debating ends forwith, and we
Divide. And sure of what to do

We disinfect new blocks of days
For our majorities to rent
With unshared friends and unwalked ways.
But silence is eloquent:

A silence of minorities
That, unopposed at last, return
Each night with cancelled promises
They want renewed. They never learn.



Abstract

There are many different ways to elect a winner from a group of candidates.
The best known method is the plurality rule, for which each voter selects one
candidate to vote for and the candidate receiving the most votes wins. Some
rules require the voters to rank the candidates, after which points are assigned
to the candidates depending on their ranking position, again with the candidate
with the most points winning. An example of a positional scoring rule like this
is the Borda count. There are many other voting procedures in use as well, such
as approval voting, where voters can select an acceptable set of candidates, or
the single transferrable vote, where votes for the most unpopular candidates are
redistributed until one candidate has an absolute majority. Other voting pro-
cedures considered here are Copeland and Dodgson’s procedures. Each voting
procedure may satisfy its own set of criteria, such as always electing the candi-
date who is first-ranked by an absolute majority of the votes if this candidate
exists (majority criterion), or always electing the candidate who would win in a
pairwise comparison to all other candidates (Condorcet criterion). Each voting
procedure also may make it more or less difficult for a voter to manipulate the
outcome of the election by not voting according to his true preferences. Fur-
thermore, for some voting rules it can be very difficult to find the winner, for
some rules finding the winner is even NP-hard.

For this thesis we compared a selection of voting procedures in two ways. Firstly
we found the smallest election instances in which the different procedures would
elect different candidates. Secondly we generated many elections with random
sets of voters to check how often different procedures coincide, how often dif-
ferent procedures elect the Condorcet winner, or candidate who would win in a
pairwise comparison with all other candidates, and how often different proce-
dures elect the Condorcet loser, or the candidate who would lose in a pairwise
comparison with all other candidates.
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Chapter 1

Introduction

In the US presidential elections of 2000, Florida was a swing state. After the
controversial recount, George W. Bush received 48.850% of the popular vote,
and Al Gore received 48.841%, making Bush the winner by a 0.009% margin [6].
1.633% of the voters voted for Ralph Nader, an independent. In the preferences
of the voters, it seems pretty clear that the voters who would most like for Nader
to be president will not have Bush as their second choice. If they had not given
their vote to their most preferred candidate but instead to Gore, their likely
second choice, Gore would have won Florida.

Here one might be inclined to blame the voters who made the futile decision
to vote for Ralph Nader. However, those voters are merely truthfully stating
their preferences, without regard to how their preferences will be taken into
account in the election. One could also consider that the voting system the US
presidential election uses poorly represents its voters.

Plurality voting, as is used in the US presidential elections, is the most common
voting system. Each voter may cast one vote, and the candidate with the most
votes wins the election. The system is so simple, it may seem strange that
there is any study in the field of voting theory at all. However, plurality voting
also does not take the preferences of its voters beyond their most preferred
candidate into account. Many other voting systems have been developed with
the aim to make a more representative aggregate of the individual preferences.
Each system has its own benefits and deficiencies.

This work is about the comparison of voting systems. Chapter 2 is dedicated
to summarising the different voting systems in use and explaining exactly how
they elect a winner. It is examined which criteria each voting rule satisfies: do
positional scoring rules always elect a majority winner? Do two small approval
elections who both elect the same candidate also elect this candidate when
they are combined? If a candidate is more popular than each other candidate
separately, does he win— i.e. does the voting rule always elect the Condorcet
winner?

Comparing only the procedures of the different voting systems is not enough to
be able to understand how the rules represent different voter populations. To be
able to better understand this phenomenon, we developed several experiments to
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rigorously illustrate the differences in the voting systems. First we exhaustively
searched through all possible elections, starting from the smallest possible. This
way we found the smallest election for which two or three voting rules all elect
a different winner. Second, we randomly generated a large amount of elections
to do some statistical analysis. With these elections, we analyse how often in an
election a Cordorcet winner exists, and also how often a Condorcet loser exists.
For each voting procedure we also analysed how likely it would be for the rule
to elect a Condorcet winner or a Condorcet loser.

To be able to run these experiments we have developed a framework with several
implementations of different voting procedures. Within this framework we can
randomly generate elections and use the data to compare the voting systems.
We can also read in user specified ballots in our particular balloting language.

One of the voting procedures we implemented for our comparative framework
is notoriously difficult to calculate a winner for. It is the procedure that was
suggested by Charles Dodgson, better known under his pseudonym Lewis Car-
roll. Finding the winner under his voting procedure is NP-hard, and our imple-
mentation cannot calculate the winner for anything larger than a small election.
Because of these difficulties, we propose a different method for finding the Dodg-
son winner in chapter 3. We propose to use a heuristic guided search to find
the winner.

An overview of this thesis is as follows: the background theory and explanation
of the different voting systems is done in the next chapter. It is followed by our
discussion of Dodgson’s procedure in chapter 3. In chapter 4 we discuss the dif-
ferent ways we can automatically generate pools of voters and thus elections, in
chapter 5 we explain how we can use these voter pools in our comparative frame-
work. Chapter 6 is dedicated to the results from our smallest different election
instance experiments, and chapter 7 is dedicated to the statistical analysis of the
voting procedures. In chapter 8 we will discuss some of the interesting things
we noticed through the course of this research, and finally we will conclude in
chapter 9.

The framework we used, as well as this report, can be downloaded from

http://voting.infosyncratic.nl
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Chapter 2

Background Theory

In this chapter, we will define different sets of voting procedures. To do this, we
will first compare the different ways that we can represent individual preferences
in a single voter’s ballot. Then we will consider the different voting procedures
which each take a particular individual preference representation. We will be-
gin with voting procedures which use positional scoring vectors to assign points
to candidates. We then will consider approval voting and some variants, fol-
lowed by voting procedures which transfer votes from less popular candidates
to more popular candidates during the election. Finally we will consider voting
procedures which satisfy Condorcet’s criterion.

Besides the comparison of the winner election algorithms, it is interesting to
consider how susceptible each voting procedure is to manipulation and dishonest
voters. We will consider this in section 2.3.

2.1 Individual Preference Representation

Quantifying an individual’s preferences towards a set of candidates is not a
trivial task. It might be possible for an individual to say that he likes candidate a
better than candidate b, and also that he likes candidate b better than candidate
c, and therefore we might be able to conclude that in his preferences a > b > c.
However, it does not show how much the voter prefers a to b or c. Perhaps the
voter agrees with candidate a’s views on almost all issues, except for one issue
in which she regards candidate b to have a much better approach. It is also
still possible that she prefers a as a candidate for all issues. If the voter only
prefers a to b for 50% of the issues, we might say that the voter is indifferent
between a and b. In this section, we will consider different forms of rankings
for the candidates, other preferences representations which can represent an
individual’s preferences, and finally we will discuss how feasible it is to elicit full
information on the preferences of a voter.
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2.1.1 Rankings

One of the most intuitive ways of comparing candidates is for a voter to list them
in order of preference. This allows voters to express preferences over multiple
or all candidates .

There are two different kinds of rankings: a strict ranking, and a weak ranking.
In a strict ranking, the voter must always necessarily prefer one of the candidates
in a pairwise comparison. Because the ranking is complete over all participating
candidates, there is a full sequence denoting the preferability of a candidate, i.e.
a > b > c. Formally speaking, strict rankings are irreflexive, asymmetric,
transitive and its members are all unequal.

In a weak ranking, it is allowed for the voter to be indifferent between some of
the pairs of candidates, creating ties within the ranking, i.e. a ≥ b ≥ c > d. In
a weak ranking therefore some of the candidates may be considered as equal.

2.1.2 Other Preference Representations

Another way of creating an individual preference representation would be to
assign points to each candidate. A voter could for instance distribute some 100
points over 10 candidates, giving the candidates he much preferred many more
points that the candidates he did not like at all. This kind of structure can of
course be mapped to a weak order, albeit with loss of some of the information
given by how many more points a candidate was assigned than another.

A method called Approval Voting introduced in the 70s [5], which has voters
approve of certain candidates and disapprove of all others, uses an approved
set of candidates to represent the voters’ preferences. These sets can also be
translated into a weak order of the form a1 ≥ ... ≥ an > d1 ≥ ... ≥ dm. This is
a simpler ballot, which could be desirable if one believes voters might not care
to fill out a full ranking of candidates.

2.1.3 Dealing With Incomplete Information

Especially in elections with many candidates, not all voters may have formed
an opinion on all candidates. It may be useful to not always demand that all
voters give a full ranking of all candidates− they might not know, and then their
filling in of the ballot could become arbitrary. Being able to deal with incomplete
information becomes a very desirable characteristic of a voting system. Plurality
voting has very simple ballots, each listing only one candidate. Approval voting
allows a voter to only fill in the candidates she approves of, possibly ignoring
unknown candidates. It might however also be interesting to allow the partial
ranking of candidates, i.e. if a voter knows he prefers a to b and c to d, but is
unsure if he prefers d to b.
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2.2 Voting Procedures

Now that we have considered the various types of individual preference repre-
sentation, we will continue with the consideration of different voting systems.
We will start out with the methods which take the ordinal ranking of a voter
and assign points to the candidates according to where they are located on the
ordinal ranking. Next we will consider approval voting and its variants. Then
we will consider run-off elections, where the winner is determined after a series
of competitions. Specifically we will consider (instant) run-off elections such as
the Single Transferrable Vote method. Finally we will consider methods which
satisfy the Condorcet criterion, i.e. that the winner of the election should also
win in any election with only one of the other candidates.

2.2.1 Positional Scoring Procedures

After all voters have given a strict ordinal ranking to all of the candidates, these
candidates may be assigned points, the number of which then depends on their
location in the ranking. This can be done by creating a scoring vector, with
at the 0th position the amount of points for the most preferred candidate, at
the 1st position the amount of points for the second most preferred candidate,
etc. Not all positions on the candidate ranking need to be assigned points, a
positional scoring vector may also have the form 〈3, 2, 1, 0, 0, ..., 0〉, where after
the 3rd position no candidates receive any points.

Plurality

Plurality voting elects a single candidate and is the most simple form of a
positional scoring procedure, with only the most preferred candidates receiving
points. The scoring vector is a 1 followed by n−1 0s, with n being the number of
candidates. The candidate which then receives the most points is declared the
winner. Plurality voting does not require the voters to submit a full ranking as a
ballot, but merely needs one name per voter, as the remainder of the candidates
will not receive points anyway. This means that balloting for plurality voting is
significantly simpler than for other methods.

In plurality voting it may be the case that some candidate receives as many
points as another. In this case there is a plurality tie. The resolution of ties
depends heavily on the purpose of the election, and is not addressed in the
procedure itself.

Antiplurality

While plurality voting assigns only one point to the most popular candidate,
antiplurality assigns points to all candidates except the least popular. The
scoring vector is then of the form 〈1, 1, ..., 1, 0〉. This method can also be seen
as voting for your least favourite candidate, with the candidate with the least
amounts of votes winning [23].
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Borda Count

In 1770 Jean-Charles de Borda introduced the Borda count as a single-winner
election method for the members of the French Academy of Sciences [10]. When
n is the number of candidates, Borda count awards n points the most preferred
candidate of a ballot, n−1 points to the second most preferred, etc., and finally
1 point to the least preferred. This is equivalent to using the positional scoring
vector 〈n− 1, n− 2, n− 3, ..., 0〉. The points assigned to each candidate in each
ballot are summed, and the candidate with the most points is declared the
winner. Again it is possible for there to be multiple candidates with the same
amount of points, in which case there may be a tied winner.

Other Positional Scoring Rules

There are many unnamed procedures one might also like to use which can be
defined as a positional scoring rule. There are many steps between plurality
〈1, 0, ..., 0〉, Borda 〈n − 1, n − 2, ..., 0〉 and antiplurality 〈1, 1, ..., 0〉. Testing at
which point the winner of an election would change depending on the voting
rule would be an interesting problem to investigate [12]. We have done this for
elections with three candidates, the details of this experiment are described in
section 7.5.

2.2.2 Approval Voting and Variants

Approval voting was introduced fairly late, in 1976 by Guy Ottewel and Robert
J. Weber [5]. Since then it has experienced some popularity as an alternative
to plurality voting. One of the strongest arguments for approval voting is that
voters do not need to submit a full ranking of all candidates in the election.
This makes the ballot significantly easier to fill out and collect than for instance
Borda count, but it remains more difficult than plurality, which only requires
one candidate on a ballot.

Approval

In classic approval voting, a ballot consists of two groupings of the candidates,
the candidates which are approved by the voter and the candidates which are
not approved. The approved candidates all receive one point, whereas the non-
approved candidates receive none [5]. Again, the candidate with the largest
amount of points wins the election, and there is still the possibility of a tie.

Cumulative Voting

It may seem slightly unfair to allow a voter who approves for many candidates
to be able to give each of those candidates as many points as a voter who only
approves of one candidate. In a variation on classic approval voting, cumulative
voting distributes the points received by the candidates according to the number
of candidates that a voter approves [1]. In total, one point may be allocated to
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all of the approved candidates, and this is distributed according to the voter’s
preferences. If in total there are 3 approved candidates, each might receive
1
3 point, or perhaps two will receive 1

4 point, and one will receive 1
2 . This

distribution of one point per voter helps distinguishing between voters who may
approve of almost all candidates, and voters who may only approve of a few.

Size approval voting

Size approval voting is a form of cumulative voting where the weight of the
vote is distributed according to how many candidates the voter has voted for.
Weights are non-negative and decrease as the amount of approved candidates
increases. Even and equal voting is a specific type of size approval, where the
amount of points all approved candidates received is 1

k when k candidates are
approved [1]. In size approval voting, one voter will only approve of a set of
candidates he values more or less equally.

2.2.3 Run-off and Single Transferrable Vote

If plurality voting already provides an overwhelming majority (i.e., more than
51% of the voters vote for a certain candidate), then it might seem unnecessary
to use a voting procedure more complicated than plurality. However, when there
are more than 2 candidates, a majority is more often not the case. In countries
where there are many candidates for president such as France, a run-off election
follows the initial election, where the two most popular candidates are selected
for the follow up vote. This procedure known as plurality run-off was heavily
criticized in 2002 when it included Jean-Marie le Pen in the run-off presidential
election in France. Although Jacques Chirac had 19.88% of the popular vote in
the initial election with Le Pen trailing with 16.86%, the final election between
the two resulted in a landslide victory of 82.21% for Chirac and a mere 17.79%
of the vote for Le Pen [7]. This peculiar election led to questioning of the voting
system applied, and whether instead a system should be used that considers
more than the two most popular candidates.

If the voters submitted a full ranking of candidates, the need to submit a ballot
for the second election would be made superfluous. Submitting a full ranking
of candidates and using that in subsequent run-off elections is known as instant
plurality run-off.

Hare’s Method - Single Transferrable Vote

Instead of holding a run-off election with the two candidates that received the
most points in the initial plurality election, Thomas Hare proposed an alter-
native system for the redistribution of votes not given to the most popular
candidates [15]. In the single transferrable vote procedure, voters submit a full
strict ranking of candidates. A plurality election is held between the first-ranked
candidates. If one of the candidates has a majority already, she is declared the
winner. Otherwise, the candidate who has received the least amount of votes in
the first-ranked election is eliminated from all ballots, and the votes from the
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voters who ranked that candidate first are proportionally redistributed to their
second-ranked candidates. If still no candidate has a majority, the process is
repeated, and the candidate which now has the least votes is eliminated.

In figure 2.1 we observe and example STV election with the candidates Jagger,
Dylan, Cash and Gainsbourg. In round 0 we observe the plurality scores of the
candidates, where Jagger is the winner with 8 votes. However, because this is
not yet a majority, the candidate with the least amount of votes, Gainsbourg, is
eliminated. In round 1 we see that the votes have been reallocated to all three
remaining candidates, and still no one candidate has a majority. Therefore
another candidate will need to be eliminated. Now Cash has the least amount
of votes. Once the Cash votes are reallocated, we see that voters who most
prefer Cash have Dylan more often as a second choice than Jagger. Therefore,
Dylan overtakes Jagger in the last round and becomes the STV winner.

Figure 2.1:

Hare’s method is also used for elections in which more that one candidate is
elected, for instance when electing a board. In that case, the quota which
declares a candidate a winner (in the case of one candidate this is more than
half, to have a majority) is adapted to the amount of candidates who are to be
elected. If a candidate receives more than the quota necessary to be elected, the
surplus votes are proportionally redistributed to the candidates who are ranked
after the elected candidate.

STV is used in the Republic of Ireland, New Zealand, Australia and Malta for
governmental elections.

Coombs’ Method

Coombs’ method is very similar to Hare’s method, and differs only in the se-
lection of the candidate who is to be eliminated. Instead of the candidate who
loses in the current plurality election, the candidate who is ranked last by most
voters is eliminated [14]. An alternative way to see this is that in Hare’s method
the plurality loser is eliminated, whearas with Coombs’ method the antiplurality
loser is eliminated.
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2.2.4 Condorcet Criterion Consistent Voting Procedures

The Marquis de Condorcet developed the concept of the Condorcet method in
the 18th century. He worked simultaneously (and frequently disagreed) with
Jean-Charles de Borda, whose voting procedure involved positional scoring. In-
stead, Condorcet proposed that the candidate who would win in all pairwise
elections to all other candidates should be the winner of the election. Subse-
quently, this winner is known as the Condorcet winner.

Unfortunately, it is not always the case that a Condorcet winner exists. For
example, in an election with three candidates and three voters, imagine the
following ballots:

a > b > c

b > c > a

c > a > b

Obviously, we have a tie between a, b and c. Suppose we would then arbitrarily
select one of the tied winners, for instance a. In the remaining two ballots, c
is preferred to a. However, if we would then switch to c as a better winner,
we would notice that in the ballots who do not have c as the most preferred
candidate, b is preferred to c. The ballots which are individually transitive are
aggregated to a cyclic election. This paradox is known as Condorcet’s paradox.

Voting procedures which always elect the Condorcet winner when a Condorcet
winner exists are said to satisfy the Condorcet criterion. Both positional scoring
voting methods and approval based methods violate this criterion, but several
other methods have been proposed which do adhere to this method. The dif-
ferences between the methods which satisfy the Condorcet criterion lay in how
they deal when a Condorcet winner does not exist.

Copeland’s Method

Copeland proposed a point system where a point is assigned to a candidate each
time he wins in a pairwise comparison to another candidate [8]. Wins and losses
of pairwise comparisons can be shown in a matrix like below:

a b c
a 0 2 2
b 3 0 4
c 3 1 0

Here each number represents the number of victories the candidate in the column
has over the candidate in the rows. In total for this election, there are 5 voters.
The ijth entry plus the jith entry should always sum to the amount of voters
there are.

If the a candidate has more than 1
2m victories over another candidate, with m

being the number of voters, the candidate wins the pairwise comparison and
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is awarded a Copeland point. In our example a receives 0 Copeland points, b
receives 2 Copeland points and c receives 1 Copeland point.

If two candidates tie in a pairwise comparison because just as many people prefer
the first candidate to the second as the second to the first, some portion of a
point is allocated, most often half a point. The Condorcet winner, if one exists,
would receive the n − 1 Copeland points, n being the number of participating
candidates, winning the election. In our example, this is candidate b. The
Condorcet loser would receive 0 Copeland points, always losing the election. In
our example, this is candidate a.

Dodgson’s Method

C.L. Dodgson, more famous under his pseudonym Lewis Carroll, proposed a
voting procedure which when a Condorcet winner did not exist, would find the
candidate with maximally close resemblance to the Condorcet winner [4]. He
proposes to do this by examining how much the ballots submitted by the voters
need to be modified to make a candidate who is not a Condorcet winner into
one. The candidate needing the least amount of modification is then elected as
the Dodgson winner.

More specifically, Dodgson proposes to count the number of minimal modifi-
cations in the rankings submitted by the voters, and elect the candidate with
the least of these minimal modifications. The modification is then seen as the
flipping of two candidates in a ballot, changing the order of the voter’s ranking.
It is however computationally very complex to find out which combination of
flips in which combination of ballots is the minimum amount of flips to make a
candidate who is not a Condorcet winner into one. Calculating the winner of a
Dodgson election is even an NP-hard problem [18].

We have attempted to provide an algorithm for calculating the Dodgson winner
using a heuristic guided search algorithm. More on the exact algorithm, the
heuristic and the results obtained can be found in chapter 3.

Black’s Method

When no Condorcet winner exists, it may be preferable to not attempt to find
the candidate who comes closest to being the Condorcet winner, but choosing
a candidate who then does well in the election based on other criteria. Black
combined both the theories of Condorcet and Borda in his method: if a Con-
dorcet winner exists, he elects that candidate, otherwise he elects the Borda
winner [4]. Whether the Borda count winner or the Condorcet winner is better
is a much disputed point in voting theory, and Black’s proposal to combine the
two has been well received although infrequently implemented.

2.2.5 Various Other Criteria for Voting Systems

There are many properties for which it seems intuitive that a voting system
should satisfy them: if a voter abstains from voting for his favorite candidate,
the candidate should not have increased chances of winning; if a candidate
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wins a certain election, another candidate should win the same election if he
were to replace the first candidate on the ballot, and many other such criteria.
We have already introduced the Condorcet winner criterion, which requires the
candidate who wins in all pairwise comparisons to win the election. There are
however many more criteria defined which voting procedures may or may not
satisfy, which may make a certain voting procedure more or less attractive for
a particular sort of election. We will explain some of these criteria here.

Condorcet Losers

If there is a candidate who loses in pairwise comparison to all other candidates,
he is known as the Condorcet loser [20]. This is not the same thing as the
candidate who is not the Condorcet winner, unless there are only two candidates.
If a voting procedure still allows the Condorcet loser to be elected, the procedure
is said to violate the Condorcet loser criterion.

Plurality voting for instance does not satisfy the Condorcet loser criterion, as
can be seen in the following example:

4 voters: a > b > c

3 voters: b > c > a

2 voters: c > b > a

In this example, a is the plurality winner with the most first ranked votes.
However, a loses 5 times to both b and c in the remaining votes, also making a
the Condorcet loser.

Many voting procedures do not satisfy the Condorcet loser criterion, and those
which do not also include all forms of approval voting. Depending on how it is
decided which candidate to eliminate, STV might also elect the Condorcet loser.
Borda count voting however does satisfy the Condorcet loser criterion [22], as
does plurality run-off voting.

Majority

We know now that purality does not always elect the Condorcet winner. How-
ever, if more than half of the voters have a particular candidate ranked as first,
there is no longer a difference between the plurality winner and the Condorcet
winner. It is said that then the candidate is the majority winner. A voting rule
is said to satisfy the majority criterion if it always selects the majority winner if
it exists [22]. If a Condorcet winner exists, he is necessarily the majority winner
as well. Therefore, if a voting procedure satisfies the Condorcet criterion, it also
satisfies the majority criterion.

Plurality, STV, Coombs’ and Plurality run-off all also satisfy the majority crite-
rion by definition, although these do not satisfy the Condorcet criterion. Borda
count however does not satisfy the majority criterion, which can be seen in the
following example:

2 voters: a > b > c > d
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1 voter: b > c > d > a

The majority criterion places more importance with the first ranked candidates,
whereas Borda count considers the full rankings by the voters.

Examples can be constructed as well which show that approval voting does
not satisfy the majority criterion. However, constructing these examples does
require a ranking of the candidates, which is not inherent to the representation
of the individual preferences given in approval.

Consistency

If we were to have two separate elections which both elect candidate a, then the
election formed by combining the two sets of voters should also elect candidate
a. If this is not the case, the voting system is said to be inconsistent [22]. In
certain cases of run-off voting, combining two voter sets from smaller elections
which both elect candidate a will not elect candidate a. Therefore STV is one
of the voting rules which does not satisfy consistency.

Monotonicity

If a candidate a loses an election, then lowering her in the ballots should not
cause her to win. If this is the case, then the voting procedure does not satisfy
the monotonicity criterion [22]. Again, STV and now also Coombs’ method do
not satisfy monotonicity. The candidate with the least amount of votes plays
a large role in determining the outcome, because it is by means of the second
preferences of her voters that the remaining votes are redistributed. If the least
popular candidate changes due to people lowering their votes, then the second
preferences of the voters of the now least popular candidate matter more. It is
clear that most run-off procedures will suffer from this.

Pareto Efficiency

For a voting system to satisfy Pareto efficiency, if every individual prefers can-
didate a to candidate b then candidate a should receive more points than can-
didate b for the election outcome [3]. Voting systems which do not satisfy the
Condorcet criterion will also not satisfy the Pareto efficiency criterion, because
then a candidate who is preferred by a majority of all voters will not win and
therefore also not reach the highest number of points.

Arrow’s Impossibility Theorem

One might be inclined to think that all the criteria listed above are so obviously
necessary, that it would be silly to adopt any rule which does not satisfy all of
them. However, it turns out that it is very difficult to find voting systems which
each satisfy all of these criteria. In the 50s, Kenneth Arrow demonstrated the
impossibility to satisfy universality, non-imposition, non-dictatorship, Pareto
efficiency and independence of irrelevant alternatives in one single system.
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The universality criterion states that all ballots submitted must be taken into
account, and if the same ballots would be considered again (albeit presented in
a different order) the outcome of the election should be the same. The non-
imposition criterion states that any final ordering in the outcome of the election
should be possible, i.e. the voters should always be able to vote in such a way
that any final ranking is possible. The non-dictatorship criterion states that
the voting system may not simply take one voter’s preferences into account, it
must be an aggregation of multiple voters when multiple voters participate. The
independence of irrelevant alternatives criterion states that if a is the winner of
an election, then changing the ballots with respect to losing candidates b and c
but not with respect to a should not change the outcome of the election. Each
of these criteria seems like they should be easy to satisfy, and yet Arrow proves
that they will never all occur together [3].

2.2.6 Electing More Than One Candidate

Some of the voting procedures detailed can also be used to elect more than
one candidate, for instance when electing a board or committee. A simple way
to make any voting procedure into a multiple winner method is to take the as
many of the top ranked candidates as is necessary to fill al the spaces available.
However, often with elections which seek to elect groups of candidates, it is not
only the actual candidates which are important but specifically the proportion
of a certain type of candidate with respect to the others. For this reason, many
multiple winner voting procedures will aim for proportional representation, or
that a party who receives 20% of the vote should also have 1

5 of the seats.

Our focus lays with single winner voting procedures, and therefore we will not
go into further detail on how multiple winner elections work.

2.3 Eliciting Sincere Voter Behaviour

Even if a voting procedures satisfies all the criteria mentioned above, it might
fail on account of being very easy to manipulate. An easily manipulatable
voting rule allows voters to change the outcome to something more preferable
to them by not reporting their true preferences. In plurality voting, voters are
encouraged not to necessarily vote for their most preferred candidate but to vote
for the candidate who is most preferred by them and has a reasonable chance
at winning the popular vote. One might for instance conclude that in the US
presidential elections, it was useless to vote for Nader. However, this does mean
that we expect voters to vote strategically.

It is much easier to vote strategically in plurality voting that it is for instance in
STV. It is however also much more difficult to calculate the STV winner than it
is to calculate the the plurality winner. In the best case, we would have a voting
system for which it is easy to calculate the winner but difficult to manipulate.

In the 70s Gibbard and Satterthwaite indepently both published a result con-
cerning the manipulability of tactical voting [13, 24]. It consists of three parts,
namely that either
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1. a voting rule is dictatorial, i.e. the winner is appointed by a single voter,

2. at least one of the candidates will never be able to win with the voting
rule,

3. a voter who has full knowledge of the preferences of the other voters will
have an incentive not to vote with their true preferences.

This result is slightly unsettling, as it does shows that no voting procedure
will elicit a voter’s true preference. However, some voting procedures are very
difficult to manipulate, for some it is even NP-hard. Manipulability is not the
focus here, but can also be considered as an important characteristic to take
into account when selecting a voting procedure.
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Chapter 3

Dodgson’s Procedure

Although Charles Dodgson himself did not necessarily acknowledge the compu-
tational complexity of determining the winner in the manner he described in
his 1876 pamphlet A Method For Taking Votes On More Than Two Issues [4],
Dodgson’s Procedure has become renown for its intractability. In his pamphlet
Dodgson describes a series of seemingly simple steps for determining the Dodg-
son winner, but behind one of the steps innocuously formulated as When the
issues to be further debated consisted of, or have been reduced to, a single cycle,
the Chairman shall inform the meeting how many alterations of votes each issue
requries to give it a majority over every other separately lays a problem which
Bartholdi et al. proved to be NP-hard in 1989 [18] and later Hemaspaandra
et al. proved to be Θp

2-complete, i.e. not even in NP [17]. Despite the incon-
venience caused by this computational difficulty, the Dodgson winner is very
desirable to compute for it is still considered to be able to provide a very ac-
curate approximation of the Condorcet winner should a Condorcet winner not
exist. Much work has been done to find a way to approximate the Dodgson
winner [25, 21] should a brute force algorithm take too long to find the actual
Dodgson winner.

In this chapter, we first detail the Dodgson method as initially proposed by
Dodgson and as later interpreted by other voting theorists. Then we will de-
scribe a brute force algorithm for finding the Dodgson winner, then propose a
method which uses the A* search algorithm to find the Dodgson winner without
having to visit the entire search space.

3.1 Finding the Dodgson Winner

The precise method as described by Dodgson in his pamphlet can be summarised
as follows:

1. Single votes for issues should be cast, with abstention as a pos-
sibility.

2. If there is an absolute majority, this issue will be carried.
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3. If no absolute majority is found, the voters should give a full
ranking of the issues. If an issue is found to have majority over
all other issues, it shall be carried.

4. If no pairwise majority is found, and there exists a cycle within
which all issues in the set beat the issues outside, the cycle is
retained and the other issues removed.

5. It is determined how many alterations of the votes are necessary
to give an issue a majority over each other separately.

6. The electors may choose to alter their votes, thus assigning a
winner.

In Dodgson’s method, the Condorcet winner is the Dodgson winner if she exists.
In case the Condorcet winner does not exist, we should attempt to find the
candidate who requires the least amount of alterations in the voters’ ballots
to become the Condorcet winner. An alteration is then seen as flipping two
candidates in a ranking, and the number of alterations required to make a
candidate into a Condorcet winner is called her Dodgson score.

All possible combinations of all possible alterations, or flips, between any two
candidates will be a very large number (( 1

2n(n − 1))m for n candidates and m
voters). However, if we do not flip the candidate that we are calculating the
Dodgson score for, it will not help her win more pairwise comparisons, and
therefore not help her become a Condorcet winner. Therefore instead we can
consider only combinations of flips where we are flipping the candidate we are
calculating the Dodgson score for up.

Let us consider the complexity of this task: in the worst case scenario, for each
candidate we would have to consider all possible combinations of flips in all
ballots. In each ballot, in the worst case the candidate we are inspecting is all
the way at the bottom and it would require n− 1 flips to reach the top, where
n is the number of candidates. It is however not necessary to flip our candidate
to the top in all cases, in fact we are looking for the minimum amount of flips.
Unfortunately we are unsure in which ballots our flips are more effective, for a
priori we are unsure of the exact placement of the other candidates in each of
the ballots. So far, per candidate that means we will have to consider (n− 1)m

possibilities of combinations of flips, where m is the amount of voters. This is
already significantly better than (1

2n(n− 1))m.

A brute force method for finding the Dodgson winner could be done by first
generating all possible combinations of flips, ordering them least amount of flips
first, and iterating through them until a Condorcet winner is found. A precise
specification is given in Brute-Dodgson.
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Brute-Dodgson(voters)
1 if ∃c ∈ candidates : Condorcet-Winner(c)
2 then return c

3 flips = Generate-flips(num-cands, num-voters)
4 flips = Order-flips(flips)
5 for c in candidates
6 do
7 score[c] = Minimum-Alterations(c, flips)

8 return candidate with the lowest score

It would of course be more effective to find a way to generate the flip combi-
nations in such a way that they are already in increasing summed order. This
has not been done here and would be interesting future work. The current
generation is specified in Generate-Flips.

Generate-Flips(num-cands, num-voters)
1 list = [ ]

2 if num-voters = 1
3 then
4 for i ∈ [0,num-cands]
5 do
6 list .append([i])
7 return list

8 if num-voters > 1
9 then

10 sublist = Generate-Flips(num-cands, num-voters-1)
11 for i ∈ [0,num-cands]
12 do
13 for j ∈ sublist
14 do
15 list .append([i] + j)
16 return list

Another optimisation which we could consider is that not all flips are possible,
for in most cases the candidate we are calculating the Dodgson score for will
not be all the way at the bottom of the ballot. Only taking the possible amount
of flips into account decreases the amount of combinations we can generate, but
again makes the generation algorithm much more complicated and has not been
done here. Instead, a flip is performed only when it is possible within a ballot,
as specified in Minimum-Alterations.
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Minimum-Alterations(c,flips)
1 for flip-combo ∈ flips
2 do
3 i = 0
4 for ballot in votes
5 do
6 ind = IndexOf(c,ballot)
7 if ind ≥ flip-combo[i]
8 then flip-up(c, flip-combo[i])
9 if Condorcet-Winner(c)

10 then return Σflips flip-combo

Using the algorithms described in this section, we can calculate the Dodgson
winner for up to 10 voters and 4 candidates. This is of course not sufficient
for any realistically sized election, and as long as we are not provided with
endless computational resources, we will need to find a better way to calculate
the Dodgson winner.

3.2 The A* Algorithm

It is clear that especially in large elections with many voters, the number of
possible flips will soon grow to be prohibitively large. In Dodgson’s case, there
would never be many voters, for he proposed his system to be used by the gov-
erning body of the Christ Church Ordinances of 1867, which never consisted of
more than 11 electors. Should we want to apply his Condorcet winner approxi-
mation to larger instances, then we will have to intelligently search through the
possibilities.

A* is a search algorithm proposed in the 60s by Hart, Nilsson and Raphael [16].
Instead of visiting all nodes possible in the tree, it uses a heuristic to explore
more promising nodes first. The nodes are scored by means of a cost function,
which determines the cost spent so far, and a heuristic function, which estimates
how much cost would be necessary to reach a goal state from the current node.
A* is guaranteed to find an optimal solution provided that the heuristic gives
an underestimation of the costs.

Before we specify how we should use A* in this particular case however, it is
interesting to see if we can first shrink our search tree. If we are to first flip
our candidate up in the first ballot, then flip her up in the second ballot, and
then flip her up in the first ballot again, this will result in the same amount
of alterations as flipping her up twice in the first ballot and then flipping her
up in the second ballot. We can avoid these equivalent combinations by never
returning to a ballot we have already flipped.

3.2.1 A* States

We can describe any node within the search tree by means of the original ballots
and a vector with length m, m being the amount of voters, with at each index
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a number representing the number of flips for the candidate in question.

3.2.2 A* Moves

The nodes accessible from each state are those that increase the flips of the last
ballot we flipped or the next. If our current state is the original ballots and a
vector like 〈4, 5, 3, 0, 0, 0〉, then our next accessible states are the original ballots
and 〈4, 5, 4, 0, 0, 0〉, 〈4, 5, 3, 1, 0, 0〉, 〈4, 5, 3, 0, 1, 0〉 or 〈4, 5, 3, 0, 0, 1〉.

3.2.3 A* Heuristics

We can imagine many different heuristics which will underestimate the cost of
making our current candidate into the Condorcet winner. The most simple is
to assume that no further flips are necessary, and that the estimated cost is
therefore 0. This will however result in another exhaustive search, so it would
be good to find a better heuristic.

3.3 An Admissible A* Heuristic for Dodgson’s
Procedure

In our implementation, we use Copeland’s method to determine whether a can-
didate is a Condorcet winner. Recall that a Condorcet winner will have a
Copeland score of n− 1, where n is the amount of candidates. Since we already
have access to the Copeland scores of all candidates at any given state, we can
use the Copeland score to determine the candidate’s most fierce competitor− id
est she with the highest Copeland score who is beating our candidate. If we flip
our candidate over the fiercest competitor in enough ballots to make our candi-
date win a pairwise competition, and we select the ballots in which we are closest
to the competitor, then we are at least underestimating the amount of flips we
need to make, for we will need to win in a pairwise competition anyway, and
while beating our fiercest competitor it is likely we might beat other candidates
as well. This heuristic can then be plugged into our A* implementation.

We have not yet implemented this particular heuristic for Dodgson’s procedure,
but it is admissible and would be very interesting future work.
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Chapter 4

Automatic Voter
Generation

For most historic elections we do not have access to the voters’ true preferences.
Especially in the case of plurality voting, we only have their most preferred
candidate. Because of this lack of data it becomes interesting to automatically
generate pools of voters, which can be used in experiments and simulated elec-
tions. The parameters which could be used when generating a pool of voters
are discussed in this chapter. These include how the ranking is chosen, and es-
pecially what probability any given ranking should be assigned, as well as how
sets of approved candidates could be determined.

4.1 Impartial Culture Condition

For real life voters, not all rankings of candidates are equally likely. It is for
instance less likely for a voter who has a progressive liberal as her first choice
to list a conservative right wing candidate as her second. When automatically
generating voter preferences for a candidate pool which may be as distinctive
as C1, C2 etc, how to simulate these preferences is not so clear.

The impartial culture condition stipulates that any possible permutation of can-
didates as a ranking is as likely as any other [19]. This means that any candidate,
no matter how left or right winged, is as likely to follow another candidate in
a ranking as any other. It is an unbiased way of generating voter sets which
has been widely adapted, and with absence of real world data one of the better
ways to go [22].

The impartial culture condition has however been highly criticised as a way of
representing pools of voters [26]. There are obvious disparities with how real
life voters would behave, and Tsetlin, Regenwetter and Grofman assert that
in a society adhering to the impartial culture condition is the most likely to
create the Condorcet paradox. When a society deviates from the impartial
culture condition, the probability of a Condorcet paradox will always decrease
[26]. According to Tsetlin et al, this changes the way in which we should be
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considering voting procedures, especially ones designed to resolve the lack of a
Condorcet winner, for the Condorcet winner will hardly ever be absent in an
empirically observed election.

4.2 Single Peaked Preferences

If we do not want to adhere to the impartial culture condition, it would be best
to have some other formal definition which restrains the preference relations
that voters can express over candidates. One of the most famous ones proposed
is known as the single peaked preference relation [4].

To be able to have a single peaked preference relation, the candidates are defined
in a one-dimensional space and therefore ordered along an imaginary line. An
example of how this could be considered is the manner in which politicians are
situated from the political left to the political right. A voter would then have a
particular most preferred point on this space, and prefer the candidate who is
closest to this point the most. As other candidates are situated further away in
the candidate space, they are less preferred by the voter.

More formally, a single peaked preference relation R exists with peak ci if for
a voter ci is the most preferred candidate and for any other cj 6= ci the voter
prefers any c which is situated between ci and cj to cj .

Clearly the formality of the single peaked preference relation, specifically the re-
quirement that preferences can be ordered on a one-dimensional line, dissociates
it from a real voter pool. In this way, single peaked preferences suffer the same
objections that the impartial culture condition does. However, the benefit of a
society with only single peaked preferences is that there can be no top cycles,
and therefore the Condorcet paradox need not be resolved [4].

4.3 Other Outcome Spaces

Besides allowing the candidates (or other issues which may be put to a vote)
to be distributed over a one-dimensional space, we could imagine that the can-
didates could be distributed over a multidimensional space, with each issue or
characteristic of the candidates mapped out in their own dimension. The voters
are also distributed in this multidimensional space and most prefer the candi-
dates located closest to them. This spatial model was first introduced by Downs
in 1957 [11], and has since been widely adopted as a general method for voter
generation [19, 9, 2].

Both the voters and candidates are distributed in this multidimensional space,
but it can still be difficult to see which candidate is most suitable for the voter.
To find the best candidate, the voter should look for the candidate who has
the best summed utility, where the utility is defined by the Euclidean distance
from the voter to the candidate and decreases linearly as the candidate is placed
further away. A ranking is found by listing the candidates in decreasing order
of utility.
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4.4 Generating Approval Sets

If we are not so much interested in rankings of the candidates by the voters,
but want to generate sets of approved candidates, we might need to go about
the voter generation problem in a different manner. One way we could generate
approval sets is to take the rankings which exist under the impartial culture
condition and randomly insert a cut-off point somewhere after the first and be-
fore the last candidate. Any candidate before the cut-off point is then approved.
It is also still possible to use a spatial distribution of voters and candidates to
determine the utility per candidate, and select a cut-off amount of utility that
a candidate needs to capture to be approved.

The first method however is more likely to generate approval sets which are ei-
ther very short or very long. Under the impartial culture condition, a candidate
c will have a probabilty of 1

n to be first and there is a probabilty of 1
n−1 that a

cut-off point will be selected after the first candidate. Two candidates will have
a probability of (2× 1

n ×
1

n−1 )/(n− 1) of being first, and still have a probability
of 1

n−1 of being approved. As the number of approved candidates approaches
1
2n, this probability will decrease, and then again increase as the number of
approved candidates approaches n. This is perhaps not ideal.

The second method depends entirely on how we select the cut-off utility amount
which we should use to accept the candidates. In his 1984 paper, Merrill sug-
gests accepting all candidates who are above a voter’s average utility for all the
candidates [19]. In this case, a voter would on average accept approximately
half of the candidates. This seems to be an even less likely scenario.

Ideally, we should assign all proper subsets of the set of candidates the same
probability. However, that requires a completely different type of voter genera-
tion than that which we will use for voters who will participate in elections with
voting rules which take an ordinal ranking, making it unattractive for compar-
ing different voting systems. For this reason, we will use the first method for
our voter generation.

4.5 Voter Estimation

One of the most desirable data sources would still be actual voters’ preferences
regarding a past election. In the case of the US presidential election in 2000,
we have assumed that the preferences of the voters who voted for Nader include
Gore before Bush in their choices. If we had access to the true preferences of
the voters, we could truly analyse how often governmental plurality elections
have elected candidates who would not have won under other voting procedures.
Perhaps we are now wrong about the preferences we have assumed the Nader
voters have. Acquiring full ranking data from the voters would however be a
logistically very involved task, and it is still difficult to say whether a voter could
provide an informed ranking of candidates in a governmental election. There is
a high chance that the rankings provided would be more or less arbitrary. If a
voting system were in place that used rankings, it is very likely that the voters
would exhibit a lot of strategic voting behaviour.
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It could still be interesting to analyse a historic election using a voter pool that is
estimated using contextual data. Many citizens opposed to the current voting
procedure in their government publish analyses like these to show the inade-
quacy of the current system. These estimated voter pools should be considered
as biased data, and therefore are not well suited to our purposes.

25



Chapter 5

Voting Machinery

To be able to practically compare voting procedures, we have implemented sev-
eral of the procedures within a comparative framework. Besides being able
to read in user-specified ballots, we have also implemented the way of auto-
matically generating ballots using the impartial culture assumption specified in
the previous chapter. This way, we can automatically generate ballots for a
prespecified candidate set and use these sets of ballots to run elections.

In this chapter, we will first briefly detail which voting procedures we have
implemented in section 5.1. The we will explain how a user might generate a new
election in section 5.2. In section 5.3 we will explain the ballot representation
language we use. Finally in section 5.4 we will explain the charts generated by
the elections. An overview fo the full voting machinery can be seen in figure
5.1.

Figure 5.1:
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5.1 Voting procedures implemented

Plurality

Plurality assigns one point to the first ranked candidate per voter and ignores
the rest of the ballot.

Borda Count

Positional scoring rule using the scoring vector 〈n− 1, n− 2, ..., 0〉.

Classic Approval

Assigns one point to all candidates in the ballot before the cut-off point.

Size Approval Even and Equal

Evenly distributes one point amongst all approved candidates.

STV

Seeks a majority candidate. If none can be found, the plurality loser is re-
moved from the ballots and a majority is sought again, this is iterated until a
majority winner is found. If there is a tied plurality loser, they are removed
simultaneously.

Copeland’s Method

Assigns a point for each competition against another candidate won. If there
is a tie against another candidate, half a point is assigned. The tie breaking
amount of points can be varied between 0 and 1 as well, but the default is set
to half a point.

Dodgson’s Method

A Condorcet winner is sought, but if none exists the ballots are examined to find
the least amount of alterations necessary to make a candidate the Condorcet
winner. The candidate with the least amount of least alterations is declared the
Dodgson winner.

5.2 Creating an Election

An election first and foremost specified by the participating candidates. These
may be provided by the user, else the system will simply generate the number
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of candidates specified by the user with the names C1, C2 etc. The election can
be run with ballots which are made through the web interface, or a specified
number of ballots can be generated using the method described in the previous
chapter. Part of the ballots may also be provided by the user while the other
part is automatically generated.

pp

5.3 Ballot Representation

A ballot contains a ranking of the candidates and a cut-off point. It is saved
as one line in a file of ballots, where the first candidate mentioned is the most
popular, and all candidates before the % are approved. An example would be
C1,C0,%,C2.

5.4 Representing Outcomes

Finally, when the election is run the outcomes of the different procedures are
displayed on another web page. After the winners have been calculated, the
user may still add more ballots and recalculate the outcomes, in which case the
results will automatically adapt.

Plurality, Borda count, approval and even and equal are represented by pie
charts depicting the distribution of points. Copeland’s method is displayed in a
bar chart showing the Copeland points. STV is a line chart with as the vertical
axis the number of votes, and on the horizontal axis each round is displayed.
See figure 5.2.
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Figure 5.2: Example results web page for the most popular Glass family member



Chapter 6

Exhaustive search for
smallest election instances
for which voting procedures
elect different candidates

It can be difficult to come up with a short example for which different voting
rules will elect different winners. If we would exhaustively search through all
possible elections, we could find the smallest instances for which this is the case.
This provides a useful way for generating examples.

To do this, we loop through all possible distributions of a number of voters over
the amount of voter types there are to find the smallest elections where a cer-
tain procedure would elect a different candidate than another voting procedure.
We did this for both pairwise comparisons of voting rules and for threeway
comparisons of voting rules.

6.1 Generating all possible election instances

When there are n candidates, there are n! possible rankings a voters could
submit of those candidates and (n− 1)n! possible different ballots if one would
also allow the specification of a cut-off point for approval voting. We will refer
to all these possible ballots as the voter types. For three candidates and no
approval voting, this is for instance:

a > b > c
a > c > b
b > c > a
b > a > c
c > a > b
c > b > a
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As mentioned in chapter 4, it is not necessarily the case that all voter types are
equally likely as all others, as this would require all candidates to be uniformly
different from each other. This is irrelevant for this experiment.

The smallest possible election would start with two candidates and two voters.
In this case there are only 2 possible voter types (2−1)2!, so there are 3 different
distributions possible of the voters over these voter types, namely either both
voters prefer candidate a over candidate b, or both voters prefer candidate b over
candidate a or one voter prefers candidate a while the other prefers candidate
b. As the number of voters and later the number of candidates increases, the
amount of possible distributions over the voter types also increases. Specifically,
the number of ways that one may distribute a number m of voters over a number
r of voter types is equal to

(
m+r−1

m

)
. This can be explained as follows: imagine

our voters to be marbles, and the voter types to be separated by walls. Let us
have a space of slots, where we can place either marbles or walls. If we would
have 10 voters and 6 voter types, we would need a space of 15 slots. We can
first select the ten places that we will place our voters, and then the remaining
5 will automatically be filled by walls determining the voter types. Therefore,
the combinations we can make are

(
15
10

)
.

To be able to exhaustively generate all possible distributions of voters over the
voter types, we employ the algorithm specified in Generate-Distributions.
The algorithm will generate all distributions, first generating the vectors which
most right-heavy distributions.

Generate-Distributions(num-voters, num-types)
1 if num-types = 1:
2 then return [num-voters]

3 if num-types > 1:
4 then
5 set ← [ ]
6 for i ∈ [0,num-voters]
7 do
8 subset = Generate-Distribution(num-voters−i, num-types−1)
9 for k ∈ subset

10 do
11 set .append([i ]+k)
12 return set

For approval voting, all voters still have a randomly generated full ranking of
the candidates which is then paired with a cut-off anywhere between after the
first candidate and before the last. We do not generate voters who approve of
all candidates or no candidates, because in an approval election, this would be
similar to abstaining.

6.1.1 Pairwise Comparison

Using the distributions as they are generated by Generate-Distributions
and a increasing number of voters and candidates, we perform an exhaustive
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search for the election instances with differing winners. In this section we have
listed the comparisons between plurality, Borda count, classic approval, even
and equal size approval, Copeland’s method, STV and Dodgson’s method.

The exact search algorithm is detailed in Pairwise-Comparison. The number
of candidates is increased by one every time the number of voters reaches 7n!,
with n being the number of candidates. The number of possible rankings is n!,
and 7 is an arbitrarily chosen constant which should be sufficient for most of
the possible rations of distributions over the different voter types.

Pairwise-Comparison

1 num-voters = 2
2 while rule1 .winner = rule2 .winner
3 do
4 candidates = Generate-Candidates(num-candidates)
5 voter -types = Permutate(candidates)
6 distributions =

Generate-Distributions(num-voters, num-candidates!)

7 for d in distributions
8 do
9 ballots = [ ]

10 for j ∈ [0,num-candidates!]
11 do
12 for i ∈ [0, d[j]]
13 do
14 ballots.append(voter -types[j])

15 Election(ballots)
16 if rule1 .winner 6= rule2 .winner
17 then break
18 num-voters += 1
19 return ballots

6.2 Results

These results produce differing unique winners. We have not sought for differ-
ing results including ties, because these do not show the differences in voting
procedures as well as the unique winners.

Comparing 2 voting rules

Plurality vs. STV

winner plurality: C1, winner STV: C2

2 voters: C0 > C2 > C1
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4 voters: C1 > C2 > C0

3 voters: C2 > C1 > C0

Plurality vs. Borda

winner plurality: C1, winner Borda: C2

1 voter: C0 > C2 > C1

1 voter: C2 > C0 > C1

2 voters: C1 > C2 > C0

Plurality vs. Copeland and Dodgson

winner plurality: C1, Condorcet winner: C2

This example is the smallest example where plurality does not elect the Con-
dorcet winner.

1 voter: C0 > C2 > C1

1 voter: C2 > C0 > C1

2 voters: C1 > C2 > C0

Borda vs. Copeland and Dodgson

winner Borda C2, Condorcet winner C1

This example is the smallest example where Borda count does not elect the
Condorcet winner.

2 voters: C2 > C0 > C1

3 voters: C1 > C2 > C0

Borda vs. STV

winner Borda: C2, winner STV C1

1 voter: C0 > C2 > C1

1 voter: C2 > C0 > C1

2 voters: C1 > C2 > C0

STV vs. Copeland and Dodgson

winner STV: C1, Condorcet winner: C2

This example is the smallest example where STV does not elect the Condorcet
winner. This could be a disputed example however, because in our algorithm
now both C0 and C2 will be eliminated simultaneously, because they have a tied
last place.

1 voter: C0 > C2 > C1

1 voter: C2 > C0 > C1

2 voters: C1 > C2 > C0
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Approval vs. Plurality, Borda, STV, Dodgson and Copeland

winner approval: C2, winner other procedures: C1

An example of approval not satisfying the majority criterion, which is satisfied
by plurality, Borda, STV and any Condorcet criterion satisfying method.

2 voters: C1 > C2 | C0

1 voter: C2 | C1 > C0

Approval vs. Even and Equal

3 voters: C2, C0 | C1

2 voters: C1 | C2, C0

1 voter: C2, C1 | C0

Even and Equal Size vs. Plurality and STV

winner even and equal size approval: C2, winner plurality and STV: C1

2 voters: C1 > C2 | C0

1 voter: C2 | C1 > C0

Even and Equal Size vs. Dodgson, Borda and Copeland

winner even and equal size approval: C1, winner other procedures: C2

1 voter: C2 > C0 | C1

1 voter: C1 | C2 > C0

It would be very interesting to find the example in which Copeland and Dodgson,
both being Condorcet criterion satisfying procedures, would elect a different
candidate. As we are writing this, a computer has been trying to calculate this
for the past 300 hours, and has of yet not come up with a solution.

Comparing 3 voting rules

The threeway comparison is identical to the pairwise comparison, only we are
looking for 3 different unique winners instead of 2. Because of this, the examples
will get a bit larger to encompass all different voter rule characteristics. Not all
of the comparisons have been run, for we are limited to elections with at most
15 voters and 4 candidates with Dodgson. After that, calculating the winner
becomes too complicated, so we have not found threeway comparisons for all of
the rules and Dodgson.

Borda vs. STV/Plurality vs. Copeland

winner Borda: C2, winner STV/Plurality: C1, winner Copeland: C0

6 voters: C0 > C2 > C1

4 voters: C1 > C0 > C2
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4 voters: C2 > C0 > C1

3 voters: C1 > C2 > C0

2 voters: C2 > C1 > C0

Plurality vs. STV. vs. Copeland/Borda

winner plurality: C1, winner STV: C2, winner Copeland/Borda: C0

2 voters: C0 > C2 > C1

3 voters: C1 > C0 > C2

3 voters: C2 > C0 > C1

1 voter: C1 > C2 > C0

Approval vs. STV vs Dodgson/Copeland

winner approval: C0, winner STV: C1, Condorcet winner: C2

2 voters: C0 > C2 | C1

1 voter: C1 > C0 | C2

2 voters: C2 > C0 | C1

2 voters: C1 | C2 > C0

Approval vs. Even and Equal vs. Copeland/Dodgson

winner approval: C0, winner even and equal: C1, Condorcet winner: C2

1 voter: C1 > C0 | C2

3 voters: C2 > C0 | C1

2 voters: C1 | C2 > C0

Plurality vs. Approval vs. Copeland/Dodgson

winner plurality: C1, winner approval: C0, Condorcet winner: C2

1 voter: C0 > C2 | C1

1 voter: C1 > C0 | C2

2 voters: C2 > C0 | C1

2 voters: C1 | C2 > C0

Plurality vs. Approval vs. Even and Equal

winner plurality: C1, winner approval: C0, winner even and equal: C2

1 voter: C0 > C2 | C1

3 voters: C1 > C0 | C2

2 voters: C2 | C1 > C0

Approval vs. STV vs. Even and Equal

winner approval: C0, winner STV: C1, winner even and equal: C2
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2 voters: C0 > C2 | C1

3 voters: C1 > C0 | C2

2 voters: C2 | C1 > C0

Borda count vs. Approval vs STV

winner Borda: C0, winner approval: C2, winner STV: C1

2 voters: C0 > C2 | C1

2 voters: C1 | C0 > C2

1 voter: C2 | C1 > C0

Borda vs. Approval vs. Copeland/Dodgson

winner borda: C2, winner approval: C0 Condorcet winner: C1

2 voters: C1 > C0 | C2

4 voters: C2 > C0 | C1

2 voters: C1 | C2 > C0

1 voter: C1 > C2 | C0

Borda count vs. Approval vs. Even and equal

winner Borda: C2, winner approval: C0, winner even and equal: C1

1 voter: C1 > C0 | C2

3 voters: C2 > C0 | C1

2 voters: C1 | C2 > C0

Borda vs. Dodgson vs. Even and equal

winner Borda: C2, winner Dodgson: C1, winner even and equal: C0

1 voter: C1 > C0 | C2

5 voters: C2 > C0 | C1

1 voter: C1 | C2 > C0

2 voters: C1 > C2 | C0

Approval vs. Copeland vs. Even and Equal

winner approval: C0, winner Copeland: C2, winner even and equal: C1

1 voter: C1 > C0 | C2

3 voters: C2 > C0 | C1

2 voters: C1 | C2 > C0

Borda count vs. Approval vs. Even and equal

winner Borda: C2, winner approval: C0, winner even and equal C1

1 voter: C1 > C0 | C2

3 voters: C2 > C0 | C1

2 voters: C1 | C2 > C0
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Plurality vs Borda count vs. Approval

winner plurality: C0, winner Borda: C2, winner approval: C1

1 voter: C0 > C1 | C2

2 voters: C0 | C2 > C1

1 voter: C1 > C2 | C0

2 voters: C2 > C1 | C0

Plurality vs. Approval vs. STV

winner plurality: C1, winner approval: C0, winner STV: C2

2 voters: C0 > C2 | C1

1 voter: C1 > C0 | C2

3 voters: C2 > C0 | C1

3 voters: C1 | C2 > C0

STV/Plurality vs. Dodgson/Copeland vs. Even and equal

winner plurality/STV: C2, Condorcet winner: C0, even and equal winner: C1

1 voter: C0 > C2 | C1

2 voters: C1 | C0 > C2

2 voters: C2 > C0 | C1

Plurality vs. STV. vs. Even and equal

winner plurality: C1, winner STV: C2, winner even and equal: C0

2 voters: C0 > C2 | C1

2 voters: C1 > C0 | C2

3 voters: C2 > C0 | C1

1 voter: C1 | C2 > C0

1 voter: C1 > C2 | C0

Plurality vs. Copeland vs. Even and Equal

winner plurality: C1, winner Copeland: C0, winner even and equal: C2

1 voter: C0 > C2 | C1

3 voters: C1 > C0 | C2

2 voters: C2 | C0 > C1

Borda count vs. Even and Equal vs. Copeland

winner Borda: C2, winner even and equal : C0, Copeland winner: C1

3 voters: C1 > C0 | C2

5 voters: C2 > C0 | C1

1 voter: C1 | C2 > C0

2 voters: C1 > C2 | C0
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STV vs. Copeland vs. Even and equal

winner STV: C2, winner Copeland: C0, winner Even and equal: C1

1 voter: C0 > C2 | C1

2 voters: C1 | C0 > C2

2 voters: C2 > C0 | C1

It is more difficult to inspect the threeway comparison results, because more
characteristics are at play. We can see that often there is somewhat of an
embedding of the smaller pairwise result within the larger threeway results, but
this is not surprising.
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Chapter 7

Statistical analysis of
characteristics of voting
procedures

Although we have many theoretical results on whether voting rules satisfy dif-
ferent criteria, we don’t know how often it is statistically the case that the rule
will not be satisfied. For this reason, we would like to perform some statistical
analysis on how often various criteria are satisfied and how often different voting
rules agree or disagree with each other.

7.1 Probability of the Existence of a Condorcet
Winner and the Existence of a Condorcet
Loser

As we have shown in section 2.2.4, a Condorcet winner does not necessarily
always exist. However, how often can we expect a Condorcet winner to exist
given a certain amount of voters m and a certain amount of candidates n? This
has already to some extent been theoretically analysed by Gehrlein [12], but we
seek statistical confirmation.

First of all we will inspect how the number of voters influences the number of
Condorcet winners and losers under the impartial culture condition. Next we
will inspect how the number of candidates influences the number of Condorcet
winners and losers under the impartial culture condition. Note that because
each ranking is equally likely to occur as its exact opposite, the likelihood of
the Condorcet winner is mirrored by the likelihood of the Condorcet loser.

In figure 7.1 we see how often a Condorcet winner or loser exists as we increase
the number of voters. The graph shows the average existence based on 100 000
elections each for 4 candidates and between 10 and 100 voters. The graph shows
how increasing the number of voters also increases the percentage of existing
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Condorcet losers or winners. After a certain number of voters however, the
percentage of existing Condorcet losers and winners stops increasing. For 4
candidates, this occurs at approximately 70%. We reason that this is due to
there being a finite number of voter types, and after a certain amount of voters,
the proportions within the pool of different voter types become steady, and
increasing the number of voters only creates a multiple of an election with a
smaller voter pool. A voting method which only elects the Condorcet winner is
consistent, and therefore multiples will produce the same (amount of) Condorcet
winners. This result has also been confirmed by results not reported here with
the same experiment set up but a differing amount of candidates. A steady
percentage of Condorcet winners and losers is approached as the amount of
voters increases.

Figure 7.1: How the number of voters influences the percentage of Condorcet
winners. These are averages of 100 000 elections with 4 candidates.

If we keep the amount of voters fixed at 50 but instead we vary the amount of
candidates, we also observe trends in the increase and decrease of the amounts of
Condorcet losers and winners that exist. Specifically, the amount elections with
Condorcet winners and losers decreases as we increase the number of candidates.
Unlike with increasing the number of voters, increasing the number of candidates
does not cause the existence of Condorcet winners or losers to approach a limit,
but continuously decreases. The rate of decrease can be observed in figure 7.2.

It is also logical that the existence of a Condorcet winner or loser should become
less likely as we increase the amount of candidates under the impartial culture
condition, because it becomes less likely that one candidate will beat all other
candidates in pairwise competition. There are more candidates to compete with,
and winning from them all becomes more difficult. This result was also found
by Tsetlin et al, who used it as a critique against the impartial culture condition
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Figure 7.2: How the number of candidates influences the percentage of Con-
dorcet winners. These are averages of 100 000 elections with 50 voters.

for voter generation [26].
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7.2 Probability of Not Electing a Cordorcet Win-
ner

The next experiment we ran involved the inspection of rules which do not satisfy
the Condorcet criterion. Even though there are cases in which they will not elect
the Condorcet winner, this only happens some of the time. Here we inspect
exactly how often rules do not elect the Condorcet winner given the Condorcet
winner exists.

In figure 7.3 we can observe the increase in percentage of not electing the Con-
dorcet winner. This graph has been generated from table 7.1, which shows the
amount of times a Condorcet winner does get elected.

Figure 7.3: How often each rule does not elect the Condorcet winner. Average
of 100 000 elections.

We already know that Copeland will always elect the Condorcet winner when
one exists, and this is reflected in the graph. That approval and even and equal
very often do not elect the Condorcet winner is not that surprising, as they
do not take the ranking information which is crucial to the determination of
the Condorcet winner into account. Similarly, although plurality does look at
the best ranked candidate, it ignores all other ballot information and therefore
predictably does very poorly as well.

The overall increase in the non-election of Condorcet winners can be explained
by the increased amount of candidates that a voting system might elect. As
there are more candidates, any candidate a priori already has less chances of
being elected. If we were to assume a random voting method, which picks any
candidate from the candidates as a winner, we would also observe an increase
in the amount of times a Condorcet winner is not elected. Voting methods such
as Copeland are specifically designed to deal with this trend, however, rules like
plurality are not.
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no. cands 2 σ 3 σ 4 σ 5 σ
Plurality 100.0 0.0 79.19 4.79 68.09 5.69 59.55 6.46
Borda 100.0 0.0 94.02 2.93 91.69 3.31 90.72 3.89
Approval 100.0 0.0 76.32 4.95 67.64 5.78 62.06 6.70
Even 100.0 0.0 74.57 4.90 66.31 5.72 59.23 6.56
STV 100.0 0.0 96.80 2.04 93.73 2.97 90.62 3.98
no. cands 6 σ 7 σ 8 σ 9 σ
Plurality 53.16 7.10 48.09 7.60 43.45 7.65 39.95 7.92
Borda 90.20 4.21 89.69 4.54 89.944 4.49 90.26 5.16
Approval 58.04 6.91 55.52 7.69 53.20 8.00 51.73 8.04
Even 54.62 6.95 50.67 7.82 47.03 8.06 44.78 8.18
STV 88.23 4.54 85.97 5.40 83.56 5.66 82.05 6.13

Table 7.1: How often do Condorcet winners get elected? In percent, average of
100 000 elections with 50 voters.

Similar results have been obtained by Samuel Merrill III [19]. Under the impar-
tial culture condition he ran 10 000 elections with 201 voters and 5 candidates,
and determined that under these circumstances plurality would have a Con-
dorcet efficiency of 60%, STV one of 88% and Borda one of 85% [19]. Here we
found 59.55%, 90.62% and 90.72% respectively. He also determined the Con-
dorcet efficiency of approval voting to be 67%, but this is done with a voter
generation which differs from ours, which might explain the discrepancy from
our 62%.
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7.3 Probability of Electing a Condorcet Loser

Another interesting criterion to analyse is the Condorcet loser criterion. Recall
that the Condorcet loser criterion requires the candidate who loses in pairwise
comparison to all other candidates must never be elected. Given that a rule
does not satisfy the Condorcet loser criterion, how often is it the case that the
Condorcet loser is elected by a given rule? Again we ran 100 000 elections with
a varying amount of candidates to determine how well the different rules do.
We collected the percentages of times that the rules would elect the Condorcet
winner when one existed. The results can be observed in figure 7.4, a graph
generated from the data in table 7.2.

Figure 7.4: How often each rule elects the Condorcet Loser. Average of 100 000
elections.

There is a very pronounced peak for most voting procedures at 3 candidates. For
two candidates it will never be the case for any voting rule that the Condorcet
loser is elected, because all voting rules are then equal to plurality. Therefore
it is unsurprising there is a large difference between 2 and 3 candidates. After
the first 3 candidates, the amount of Condorcet losers elected decreases for all
procedures. Again, there is a larger a priori chance that any candidate would
be elected if there are less candidates, which explains why there is a decrease in
the election of Condorcet losers.

It has already been proven that Borda count will never elect the Condorcet
loser [22], and this is reflected in our graph. Approval voting decreases faster
than plurality and even and equal, which can be explained by the fact that
second, third, etc. ranked candidates still receive a large amount of points when
they are approved in comparison to even and equal and plurality, which not only
promotes them, but also helps in distinguishing from the last ranked candidates.
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no. cands 2 σ 3 σ 4 σ 5 σ
Plurality 0.00 0.00 1.40 1.39 1.10 1.31 0.82 1.21
Borda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Approval 0.00 0.00 1.53 1.42 0.72 1.06 0.34 0.80
Even 0.00 0.00 2.80 1.92 2.03 1.75 1.38 1.58
STV 0.00 0.00 0.32 0.68 0.19 0.56 0.11 0.43
no. cands 6 σ 7 σ 8 σ 9 σ
Plurality 0.67 1.11 0.53 1.12 0.49 1.11 0.37 1.03
Borda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Approval 0.21 0.63 0.12 0.50 0.05 0.36 0.02 0.21
Even 1.09 1.47 0.76 1.31 0.63 1.26 0.54 1.21
STV 0.07 0.38 0.04 0.31 0.011 0.17 0.01 0.17

Table 7.2: How often are Condorcet losers elected? In percent, average of 100
000 elections and 50 voters.

7.4 How often do voting rules elect the same
candidates?

For groups of randomly generated candidates and voters adhering to the im-
partial culture condition, we calculated the percentage of times that the voting
rules would agree with each other. In all cases, we generated 10000 elections
with 50 voters, with respectively 3, 4 and 5 candidates. With 2 candidates the
voting rules all agree 100% of the time because then they all mirror plurality,
but as the number of candidates increases this number diverges.

Plurality Borda Approval Even STV Copeland
Plurality 100.0 70.5 59.6 63.72 70.96 66.23
Borda 70.5 100.0 69.34 67.4 75.66 81.32
Approval 59.6 69.34 100.0 79.85 62.65 64.0
Even 63.72 67.4 79.85 100.0 62.56 62.52
STV 70.96 75.66 62.65 62.56 100.0 85.62
Copeland 66.23 81.32 64.0 62.52 85.62 100.0

Table 7.3: Average of 10000 elections with 3 candidates and 50 voters

Plurality Borda Approval Even STV Copeland
Plurality 100.0 57.61 45.58 52.06 59.13 53.57
Borda 57.61 100.0 60.22 58.54 67.7 74.99
Approval 45.58 60.22 100.0 71.35 51.05 53.53
Even 52.06 58.54 71.35 100.0 52.39 52.31
STV 59.13 67.7 51.05 52.39 100.0 74.91
Copeland 53.57 74.99 53.53 52.31 74.91 100.0

Table 7.4: Average of 10000 elections with 4 candidates and 50 voters
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Plurality Borda Approval Even STV Copeland
Plurality 100.0 49.06 36.3 43.54 49.83 44.7
Borda 49.06 100.0 52.98 50.52 61.64 71.83
Approval 36.3 52.98 100.0 63.06 43.08 46.58
Even 43.54 50.52 63.06 100.0 43.88 44.47
STV 49.83 61.64 43.08 43.88 100.0 67.6
Copeland 44.7 71.83 46.58 44.47 67.6 100.0

Table 7.5: Average of 10000 elections with 5 candidates and 50 voters

7.5 From Plurality to Borda to Antiplurality

Recall that a positional scoring vector assigns points to candidates depending
on where they are in the ranking. Plurality: 〈1, 0, 0〉, Borda count: 〈1, 1

2 , 0〉,
antiplurality: 〈1, 1, 0〉.
For 3 candidates this could be generalized as: 〈1, λ, 0〉 for λ ∈ [0, 1], where all
the scoring vectors we create by varying λ represent different voting procedures.
We know that Borda count does not elect the Condorcet loser [22], and we know
that plurality does. When does this change? When we examine these unnamed
voting rules, how often do they elect the Condorcet winner and loser?

λ Condorcet winners not elected σ
0.0 20.7569710672 4.69382993521
0.1 13.1364955705 3.88969320457
0.2 10.2866459258 3.50170350242
0.3 6.7884043218 2.90441992668
0.4 4.9678354044 2.50772674755
0.5 5.8773270604 2.73039370271
0.6 6.2252217648 2.82781965571
0.7 9.0160946185 3.32580327478
0.8 13.7318585388 3.99138476435
0.9 17.5088685503 4.43500579043
1.0 26.0178407320 5.11604112681

Table 7.6: Average of 1 000 000 elections with 3 candidates and 50 voters.

In both tables we can see that Borda count does the best in electing Condorcet
winners and not electing Condorcet losers, and the results monotonically worsen
as we increase or decrease the λ from 0.5. These results more or less match the
results found by Gehrlein in his 1996 paper, where he ran the same experiment
but does not mention with how many voters or how many elections he averaged
[12]. He also varies λ from 0 to 0.5, and we vary λ from 0 to 1 in step sizes of
0.1.
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λ Condorcet losers elected σ
0.0 1.4145844893 1.36843430073
0.1 1.2165588940 1.26835825673
0.2 0.5421445603 0.84599760421
0.3 0.0681647892 0.29890863742
0.4 0.0008184719 0.03344556222
0.5 0.0000000000 0.00000000000
0.6 0.0009523477 0.03599949849
0.7 0.0938891876 0.35478874761
0.8 0.5935236318 0.88103790651
0.9 1.3747336139 1.33509456372
1.0 1.7763837257 1.52177847947

Table 7.7: Average of 1 000 000 elections with 3 candidates and 50 voters.

7.6 From classic approval to even and equal

Recall size approval voting, where the amount of points is dependent on the
amount of approved candidates. All size approval voting rules can be defined
by a weight vector. If k candidates are approved, they all receive the amount of
points specified in the kth position of the weight vector. For classic approval the
weight vector is homogenous: 〈1, 1, 1〉, and for even and equal it decreases as 1

k
decreases. For three candidates, the weight vector for even and equal becomes
〈1, 1

2 , 1
3 〉.

For 3 candidates, the weight vector could be generalized as: 〈1, λ〉 for λ ∈ [0, 1].
Since at most n − 1 candidates can be approved, n being the total number of
candidates, the weight vector also only needs to be n− 1 long.

There are now many unnamed voting rules between classic approval and even
and equal size approval voting for 3 candidates. When we examine these un-
named voting rules, how often do they elect the Condorcet winner and loser?

λ Condorcet winners not elected σ
0.0 41.4607972575 5.66561683719
0.1 32.4272765144 5.39781829875
0.2 29.8731661125 5.29664273181
0.3 26.9514371539 5.12369231705
0.4 24.8074485792 4.94941138371
0.5 25.0430820551 4.97224795127
0.6 21.6506186499 4.73660252182
0.7 20.5394122957 4.63764501562
0.8 20.0271627413 4.58710523893
0.9 19.6000146242 4.55179231853
1.0 23.2970908415 4.86697819586

Table 7.8: Average of 1 000 000 elections with 3 candidates and 50 voters.

λ = 0.0 is of course a bit of an odd case: if more than 1 candidate is approved, no
points are assigned. This translates to half of the voters really abstaining from
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the election, for their votes have no effect. The other half of the voters voting
according to the plurality rule. Both λ = 1 and λ = 0.5 agree with previous
results we obtained when running experiments with named procedures, but
λ = 0 is incomparable to the effects of half the voters abstaining.

λ Condorcet losers elected σ
0.0 7.80094044005 3.08511452967
0.1 8.13535203584 3.16173858730
0.2 6.50226128269 2.86136649503
0.3 5.10938882109 2.54174903336
0.4 3.85881210210 2.23562767399
0.5 2.76132073023 1.88962461990
0.6 2.75264332602 1.88507580978
0.7 2.45252118512 1.78778627975
0.8 2.25656247742 1.71562194977
0.9 2.26258875927 1.72161512372
1.0 1.57445306300 1.43468100974

Table 7.9: Average of 1 000 000 elections with 3 candidates and 50 voters.

In the previous experiments we named procedures we also noticed that even
and equal performs more poorly than approval voting in electing the Condorcet
loser. With this experiment we observe that this is a trend that increases as we
decrease λ. As λ decreases, the amount of Condorcet losers elected increases.
We still think this is due 2nd and 3rd ranked candidates receiving less points,
and therefore not distinguishing themselves significantly from the last ranked
candidates.
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Chapter 8

Discussion

Some of the experiments we ran brought up certain issues and results that we
found surprising or interesting enough to bring up separately.

8.1 Approving of all candidates

In our implementation, we do not generate voters with a cut-off point which
is before the first or after the last candidate. Approving of all candidates or
approving of no candidates does not change the outcome of the approval or
even and equal election. However, when comparing the outcomes of different
election systems, approving of all candidates can cause the outcome to differ.

Our smallest election for which Borda count and approval voting differ is as
follows:

2 voters: C1 > C2 | C0

1 voter: C2 | C1 > C0

However, one might notice that the same outcome could be achieved if we
removed candidate C0 entirely, and thus would provide us with an election
instance with only two candidates.

2 voters: C1 > C2 |
1 voter: C2 | C1

If we were to allow approval of all candidates, or really abstention in our search
for the smallest elections, we might find even smaller election instances. How-
ever, it is a theoretical situation which does not occur practically. For this
reason, we find our original results more interesting.
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8.2 Selection of candidate to eliminate in Hare’s
method

One of the things which was surprising in the Condorcet loser election exper-
iments (see section 7.3) is that STV also elects the Condorcet loser at times,
while STV is commonly assumed to satisfy the Condorcet loser criterion. After
inspection of the elections where this was the case, we found that it was due to
our implementation of STV: if there is a tied last place in plurality, we remove
both last placed candidates simultaneously. However, when doing this we might
also cause the Condorcet loser to be elected.

Imagine the following election between candidates A, B and C:

2 voters: A > B > C
2 voters: B > A > C
3 voters: C > A > B

Because A and B are both the least first ranked of the candidates, we remove
them both. However, the only candidate who then remains is C, who is actually
the Condorcet loser.

Coombs’ method avoids this problem by selecting the antiplurality loser, and
does satisfy the Condorcet loser criterion.

Hare has not formally determined what to do in case of a tie for plurality
loser, and neither have other sources on how STV is used. This might be
considered odd, because STV is used for many governmental elections, but the
case described above would only happen for very small amounts of voters and
therefore would hardly ever arise in real life.
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Chapter 9

Conclusion and Future
Work

We have examined many different voting procedures. First we examined their
definitions and characteristics they are theoretically known to possess. Then we
examined how we can make the smallest election instances where different voting
procedures elect different candidates. To be able to do this, we implemented a
comparative framework which can take the same ballots and run elections with
many different voting procedures.

Using our comparative framework, we also ran statistical experiments which
would give an indication of how often certain rules fail certain criteria if they are
already theoretically known to at times do so. We checked how often different
non-Condorcet criterion satisfying voting procedures would not elect the Con-
dorcet winner when one exists. Similarly, we checked how often non-Condorcet
loser criterion satisfying rules would actually elect the Condorcet loser. We
found that this happens very infrequently, even for notoriously deviant rules
such as approval voting.

We examined unnamed positional scoring voting procedures for 3 candidate
elections, and found that as we deviate from Borda count towards plurality
or antiplurality, the amount of times the Condorcet winner is not elected or
the Condorcet loser is elected increases monotonically. We examined unnamed
approval voting procedures for 3 candidate elections as well, and found that for
size approval voting, assigning multiple approved candidates less points than
single approved candidates causes it to be more likely that the Condorcet loser
is elected as the amount of points decreases.

We compared how often different voting procedures would elect the same win-
ners, and found that as we increase the number of participating candidates all
voting rules diverge more in electing different candidates. This divergence is
very sharp at the beginning, with very large drops from 2 to 3 candidates and
from 3 to 4, but this the decrease slows and may approach some limit. It would
be interesting to continue work with this experiment to determine exactly what
this limit is.
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For the smallest election instances, we increased the amount of voters before
increasing the amount of candidates participating. It is possible that we could
have found an example with 4 candidates and 2 voters where our examples have
3 candidates and 3 voters. It would be interesting to continue finding these
instances and comparing them to each other.

We were unable to find the smallest election instance where Copeland would
elect a different candidate than Dodgson. To be able to do this and also run
other larger elections with Dodgson, we would like to implement the heuristic
proposed for finding the Dodgson winner in the future.

Many of the results we found had 3 or more variables to display, we would be
interested in finding a better way to display the data and perhaps be able to
manipulate which parameters are being shown in real time, to make the data
more easy to understand.

Finally, we would like to implement more voting procedures in our comparative
framework as well as different ways of automatic voter generation, to be able to
run experiments with these as well.

52



Acknowledgements

This work was done as my bachelor’s thesis in AI at the University of Amster-
dam. It was done in the context of the AI honours programme.

I would like to thank Ulle Endriss for being absolutely the best possible teacher
and thesis advisor− from introducing me to the topic to poring over buggy
results. I would also like to thank him for coordinating the honours programme
and supervising my first research project, which is really the main reason I left
art school for AI.

I would also like to thank Marco Wessel for the constant influx of consumptables
without which I would have long since withered away, and allowing me to use
his servers for experiment running and repository hosting. I think he might use
the word awesometastic.

Finally I would like to thank fellow honours students Gijs Kruitbosch and Hylke
Buisman for giving random advice at random hours, and also all my classmates
for all their help and coffee donations.

The poem at the beginning is taken entirely without permission from Damien
Hirst’s latest book Superstition.

53



Bibliography

[1] Jorge Alcalde-Unzu and Marc Vorsatz, Size approval voting, Research
Memorandum 008, Maastricht : METEOR, Maastricht Research School
of Economics of Technology and Organization, 2007.

[2] John H. Aldrich, Before the convention, University of Chicago Press,
Chicago, 1980.

[3] Kenneth Arrow, A difficulty in the concept of social welfare, Journal of
Political Economy 58 (1950), no. 4, 328–346.

[4] Duncan Black, The theory of committees and elections, Cambridge Univer-
sity Press, 1958.

[5] Steven J. Brams and Peter C. Fishburn, Approval voting, The American
Political Science Review 72 (1978), no. 3, 831–847.

[6] US Federal Election Commission, 2000 presidential electoral and popular
vote, 2000, http://www.fec.gov/pubrec/fe2000/elecpop.htm.
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