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Abstract

Pulsars are very dense rotating radiating stars, which have only recently been discovered in our galaxy.
Automatic data processing techniques for detecting pulsars are still in development. This paper describes
an algorithm for detecting irregular pulsars which do not easily show up in detection techniques relying
on the periodicity of a pulsar. It does this by analyzing single bursts based on various features. We have
tested it with the GBT350 data, and have found some promising results.
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1. Introduction

A new distributed astronomical data collecting sys-
tem is being implemented through the Netherlands,
Germany, Great Britain and France which will col-
lect up to 1 square kilometer of radio-frequency
(wavelengths of around 1 meter) data. The project
is called LOFAR, for Low Frequency Array, and is a
interferometric array of radio telescopes which will
be particularly suited for finding the radio signals
transmitted by pulsars, or pulsating stars [5].

Pulsars are very interesting to astrophysicists be-
cause of the extreme conditions they create. They
are highly magnetized collapsed massive stars (neu-
tro stars) which emit electromagnetic radiation
while rotating, sometimes as quickly as once ev-
ery couple of milliseconds. When the axis of ro-
tation is orthogonal to our line of sight, we can
observe the electromagnetic radiation in the form
of periodic radio waves, similarly to how we see a
blinking light from a lighthouse. Pulsars have such
strong gravitational forces that gravitational radia-
tion, which was predicted but not observed during
the conception of general relativity, can be observed
and studied [3].

So far, pulsars have been detected using very large
radio telescopes such as the Green Bank Telescope
in West Virginia. The amounts of data produced by
readings from the GBT were small enough that as-
tronomers would plot the data they gathered and
detect pulsars by eye. So far, some 1800 pulsars
have been detected, but due to the current posi-
tioning of radio telescopes, most of those pulsars
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have been detected in one particular quadrant of
the galaxy. Once the LOFAR is fully operational
however, there will be a lot of data from other quad-
rants, too much to be able to have a human look at
it all. To be able to aid the detection of pulsars, it
has become very interesting to develop some data-
processing methods which will filter data from the
radio telescopes and preliminarily detect possible
pulsars.

In this paper, we will present results from a pilot
project in automated single-burst pulsar detection.
We used data from the GBT and developed algo-
rithms to separate astronomical signals from noise,
and used the algorithms to present the user with
plots of data which contain possible pulsars. In
section 2 we will explain some of the attributes of
pulsars. In section 3 we will explain features of the
radio data we are aiming to analyze. In sections 4
and 5 we will explain some techniques for finding
pulsars, and in section 6 we will outline our ap-
proach to detection. The technical implementation
is detailed in section 7, and finally you can see the
results of our algorithm and a conclusion in sections
8 and 9.

2. Aspects of Pulsars

There are several different kinds of pulsars:
rotation-powered pulsars, accretion-powered pul-
sars and magnetars. Radiation is powered through
the loss of rotational energy in the first, through
gravitational potential energy in the second and
through decay of magnetic field in the third.

The distance from the earth to the pulsars is mea-
sured by dispersion measure or DM. Dispersion
measure is not an absolute distance, but uses the
dispersion of the signal to calculate how much lays
between the source of the signal and the observer.
It can be seen as a quantification of the amount of
electrons between the observer and the source. We
are of course most interested in finding pulsars very
close to earth, or with a very low DM (<100).

However, the closer we are to the earth, the more
interference we will find in our radio frequency data.
This is commonly referred to as RFI, or radio fre-
quency interference, and is not only created by ra-
dio signals on earth, but also by satellites, Aurora
Borealis, the Sun, and many other sources.

The signals that pulsars emit can be very weak, and
therefore can be easily lost in RFI. Their periodicity
is also not necessarily predictable: while some pul-
sars may pulse every couple of milliseconds, other
pulsars may only emit single bursts every 100 sec-
onds, or even emit bursts very irregularly. Collect-

ing enough data to find the periodicity of the irreg-
ularly or infrequently pulsating pulsars is difficult,
and the subsequent detection of such single-burst
pulsars is hard to automate using currently popu-
lar techniques such as Fourier analysis.

3. The GBT350 Data

For the our automated pulsar detection methods,
we analyzed radio data collected in the GBT350
survey [2]. The data covers approximately 1000
square degrees of sky visible from the Northern
Hemisphere, and is separated into single pointings,
each approximately 0.6 degrees in diameter. The
observing frequency of the data is between 325 and
375 MHz, and each pointing was observed for 120
seconds. The observations have been made between
0 and 1500 DM, but we will only be analyzing up
to 300 DM.

When observing a pointing with a beam of 0.6 de-
grees, it is still possible to observe pulsars which are
some distance away (up to 3 degrees, depending on
the strength and distance of the pulsar). Because
of this we could calculate which pulsars we could
possibly see in which pointings, and locate known
pulsars in the data. Using the characteristics of the
signals made by the known pulsars, we will attempt
to find new pulsars.

Figure 1: The GBT350 pointings (grey) and
the known pulsars in the area (pink). There
are some gaps in the data, but there is no space
between the pointings.

4. Known Pulsar Detection Methods

Because many pulsars have periodic signals, they
are easily detected using a discrete Fourier trans-
form, which separates a discrete signal into various
harmonic functions [1]. Even with a lot of RFI,
discrete Fourier transforms are very good at detect-
ing periodic signals. There has been a reasonable
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amount of work done in the automated detection of
periodic radio signals, for instance in the PRESTO
suite [4], and many of the pulsars which have al-
ready been detected in the GBT350 data have been
done using these techniques.

5. Detecting Irregular or Slow Pulsars

In this project, we will focus on finding single-burst
pulsars. This name is slightly misleading, because
we are aiming to detect pulsars which only show
one burst during the time we observed that area of
the sky, which is only for 2 minutes. As pulsars,
they of course will be pulsing more than once. To
be able to do this, we will examine bursts found
in our data, and attempt to find bursts which we
think might come from a pulsar.

There are typical characteristics of bursts which
make them more likely to originate in a pulsar. We
will be looking for the following attributes for each
burst:

• The signal to noise ratio should be higher than
the mean of signal to noise ratios taken over
a DM range.

• The burst should show strongly in one DM
and have a diminishing effect on the DMs sur-
rounding it.

There are also typical characteristics of RFI signals,
which we could use to filter out bursts likely to be
interference. Especially characteristics pertaining
to the strength of neighboring bursts in surround-
ing dispersion measures can be telling for RFI. To
be able to adequately filter out the RFI, we would
need to have a more precise description of these fea-
tures, especially in how they can be distinguished
from pulsar bursts.

6. Approach

We propose to do a multiple pass analysis on the
data. Firstly, probable RFI and other noise should
be removed from the data (per single pointing).
Then the remaining data should be analyzed per
candidate burst, where the burst context is taken
into account when scoring. Each burst then receives
a score based on the criteria specified in section 7, a
combination of which will define its final ‘probable
pulse’ score. This score can easily be thresholded
to present candidate pulsars.

The criteria on which to base the scoring however
are not uniform. Ideally, the best net influence of
each criterium (or combination of criteria) could be

learned automatically. One possibility is to boot-
strap the variables based on known and clearly vis-
ible pulsars, iteratively revising them to approach a
good estimate. The problem with this is that ‘single
pulse’ pulsars are explicitly hard to distuingish, and
might not be described best by ‘clear pulsars’ at all.
Therefore we will attempt a more algorithmic ap-
proach for single burst recognition here. However,
it would be very interesting to automatically learn
features of pulsars, and some ideas regarding that
are outlined in section 9.

6.1. Outline

Figure 2: System overview
For the time being, we propose 3 different filters
(figure 2) over the pruned data which we will com-
bine to produce a score per dispersion measure
(DM). The first, dropoff should analyze the shape of
the burst and determine whether it looks like astro-
nomical data or noise. The second, vertical penalty
should determine how likely a burst is really just
noise based on its neighboring bursts. Finally, the
significance bonus should reward statistically very
unlikely bursts in their scores.
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6.2. Main algorithm

scorePulsar(data)

1 cleandata = removeRFI(data)
2 candidates = findCandidates(cleandata)
3 for all DM
4 do score =

scoreDM(dm,candidates,cleandata)
5 return score-vector

We propose to confine the filters to a function called
scoreDM, which will be called individually for each
dispersion measure. The dispersion measure rank-
ing highest in a pointing will be returned as the
most likely DM to find a pulsar. The processes be-
fore the scoring of the DMs will simply attempt to
remove as much noise as possible. Section 7 will
give more details on how each DM score is built up
from various filters.

7. Multipass filter, technical implementa-
tion

This section is divided in three parts. The removal
of noise, the explanation of specific filters and the
final score.

7.1. RFI

As a way of cleaning our datasets we intended
to remove noise from it. Removing this noise
should make it easier to detect pulsars, especialy
weak ones, and make it easier to see them by eye
when plotted. Noise in the datasets can be sub-
divided into two types, being random noise and
RFI (or radio-frequency interference). Because ran-
dom noise can not be modelled we decided to focus
on RFI. RFI can show up in all DMs and can be
characterized by very strong signals of about the
same signal-to-noise ratio showing up over a range
of DMs on small time-range. In the plots of time
vs DM (vs signal-to-noise) RFI shows up as vertical
collumns.

Removing RFI from the datasets proved to be quite
difficult. Although RFI can be quite easily distin-
guished by eye it is somewhat harder to do this
in an algorithmic approach. We noticed that RFI
shows similar characteristics as pulsar bursts. The
diamond-shape characteristic to pulsar bursts also
shows up in RFI, though RFI has a tendency to
spread out over a much larger DM-range and to
have a more consistent signal-to-noise ratio (instead
of decreasing). Our pulsar burst finding algorithm
had a hard time to distinguish between RFI and
pulsar bursts, so we decided not to remove this

noise (which would cause a lot of pulsar bursts also
to be removed). We have left the RFI-removal how-
ever as an interface in our algorithm to be imple-
mented later when an expert can make a better
characteristic of RFI vs pulsar bursts. We have
developed a counter measure in our scoring mecha-
nism however against RFI showing up as good pul-
sar candidates, detailed in section7.

7.2. Filters

In our algorithm we have used a multi-pass filter
system, where likely candidates of pulsar bursts are
pruned and eventually a score per DM is calculated.
We used a 2d-array with DM and time (in the form
of timebins of size 0.1s) as its dimensions. These
bins contain bursts with all their characteristics as
delivered in the data files. For an overview see code-
box 7.3.

Our first-pass filter is a very simple filter used to
filter out possible diamond-shape candidates, and
looks for local maxima within a time range. It
searches for bursts with bursts in the DM above and
below it with a smaller signal-to-noise ratio. Bursts
with a burst on only one of the adjacent DMs are
also approved. Only of these candidates the drop-
off is calculated, which is the number of drop-off
steps, that can be made from the local-maximum-
burst. For this we use a drop-factor which is used
to control the decline-rate. The lower this is set,
the lower the average drop-off score gets. We use a
value of .95 at the moment.

Figure 3: The diamond shape we are looking for
which is characteristic to pulsars. First prun-
ing would find the big circle (high sigma) as a
candidate, and next assign it a drop-off score of
4.0 for the surround bursts.

In our scoring mechanism a second filter is used,
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only assigning scores to bursts with a drop-off-score
above a certain threshold. This is used to distin-
guish between very small diamonds (with a drop-off
of 1 or 2), which can be assigned to coincidence, and
more probable pulsar bursts with a higher drop-off.

7.3. Scoring

Our scoring mechanism is a combination of scores
of certain characteristics determined by experiment
(and intuition) that are distinctive for pulsars. The
scores are combined as to assign a score to a sin-
gle burst. These scores are then summed per DM
which leads to a score per DM. In post-processing
the maximum score of these scores per DM is used
as the score for the pointing, and its DM as the
most probable DM containing the pulsar. Of course
the vector containing the various score of each DM
is kept, so any score above a threshold can be exam-
ined in a pointing, and it is of course also possible
to detect two separate pulsars in one pointing.

For our scoring of a single burst we use three charac-
teristics; drop-off score, signal-to-noise significance
and RFI-penalty. Drop-off score and signal-to-noise
significance are positive characteristics which in-
crease the score of a burst. RFI-penalty (codebox
7.3) is a negative characteristic which lowers the
score of a single burst. Again only the scores for
the pruned bursts are calculated.

RFIpenalty(pulse,candidates)

1 timebin = pulse.timebin
2 lnum = len(candidates.timebin.left)
3 cnum = len(candidates.timebin)
4 rnum = len(candidates.timebin.right)
5 return (lnum + cnum + rnum)

The drop-off score is the number of steps that can
be made to adjacent DMs following the diamond
shape (codebox 7.3). This score is used to score a
burst’s resemblance to the diamond shape charac-
teristic of pulsars or astronomical signals in general.

getDropOff(pulse,cleandata)

1 dropfactor = 0.95
2 startsig = pulse.sigma
3 sig = startsig
4 apulse = pulse
5 upscore = downscore = 0
6 while (apulse.dmUp.sig < sig · dropfactor)
7 do apulse = apulse.dmUp
8 sig = apulse.sig
9 upscore++

10 sig = startsig
11 apulse = pulse
12 while (apulse.dmDown.sig < sig · dropfactor)
13 do apulse = apulse.dmDown
14 sig = apulse.sig
15 downscore++
16 return upscore + downscore

The signal-to-noise significance score is used to de-
termine the significance of the burst in the point-
ing, based on the average and standard deviation of
the signal-to-noise in all bursts in a pointing. This
targets random noise and RFI at the same time.
Random noise will not be significant in a point-
ing, because its sigma will not deviate significantly
from the average. RFI is targeted because it causes
a multitude of high signal-to-noise bursts, which
increases the average, and causes most of the RFI
bursts to be considered non-significant (although
they are still assigned a score). A burst is consid-
ered significant when it has a probability of <0.001
using the following probability density function:

f(x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ
)2

When a burst is considered significant it is given a
bonus of 10.0 in the score. This score was chosen
because drop-off scores range on average from 1 to
10, and significance of a burst should give the score
a boost equal to a good diamond shape. A gradi-
ent bonus score could also be used, but we thought
that this would affect the scores of weak pulsars in
a negative way, which is not what we want.

The negative characteristic RFI-penalty is used to
penalize RFI-noise. Its intuitive interpretation is
that a certain burst is less significant (and thus ac-
quires a lower score) when it is found in RFI-noise.
The RFI-penalty is the number of candidate bursts
in the timebin of a burst (over all DMs) and its two
adjacent timebins. This penalty targets RFI-noise
directly, because datasets with RFI-noise in it tend
to have a much higher number ( factor 10 to 100)
of candidates. Because of this, bursts in RFI-noise
get very low scores.

The formula to calculate the score of a single burst
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is given by:

score =
(2 · dropoff + sigbonus)

RFI -penalty

where 2 is a scaling factor that rates dropoff-score
higher than significance bonus.

The pseudocode for the DM scoring is given in code-
box 7.3.

scoreDM(dm,candidates,cleandata)

1 score = 0
2 for all TimeBins

where candidates-DM = dm
3 do for all Pulses in TimeBin
4 sigbonus = 0.0
5 if isSignificant(pulse)
6 then sigbonus = 10.0
7 vpenalty =

RFIpenalty(pulse,candidates)
8 dropoff =

getDropOff(pulse,cleandata)

9 score +=
(2 · dropoff + sigbonus)

vpenalty

As said previously, these scores are summed per
DM, and given as an output vector. The max-
imum score with its DM are used as the score
for the pointing. When all datasets are analyzed
these pointings are sorted on their score, resulting
in likely pulsar candidates showing up high in the
list, and less likely candidates showing up lower.
A threshold can easily be used on these scores to
discard of very unlikely pulsar candidates.

8. Results

For our results we evaluated our algorithm on a
list of known pulsars. We wrote a program that
would output a list of pointings in our dataset that
would contain known pulsars (by calculating which
dataset-pointings were close to pointings of known
pulsars). Later we noticed that some pulsars show
up in multiple pointings, and that pulsars do not
show up in all pointings outputted (because the pul-
sar’s DM could be outside our range). We then
hand checked the list we had (which had about 40
entries) with the plots to see if a pulsar showed up,
and created a list of actual pulsars in our dataset.

When our algorithm started giving likely pulsar
candidates we soon constructed a large list of falsely
‘new’ pulsars, we found out that the angle at which
pulsars could show up in our pointings was bigger
than we originaly expected, and so we adjusted our
angles of expectation from 0.3 deg (which is the ra-
dius of a pointing) to 0.6 deg and 1.0 deg. Not all

of the pointings had to contain pulsars, so we de-
cided to use this list as a check if our found pulsars
already existed or not. We then started working
through our list of likely pulsars, and generated a
list of pulsars in our dataset. We hand checked all
these candidates by looking at the plots, and only
counted them as pulsars if they were evident. It is
possible we made some true negatives, but we only
counted evident pulsars as pulsars so we are quite
sure we haven’t listed any false positives.

When evaluating our results we did notice a certain
sort of ground noise (see figure 4 below) that was
rated very highly in our scoring. These scores how-
ever were all found at a DM <10. Because we didn’t
have the knowledge to distinguish this from pulsars
we decided to make a separation between the results
above 10 DM and below 10 DM. Because of the
amount of datasets with this same kind of ground
noise, we didn’t evaluate them all by hand, and de-
cided to ignore them for the time being. However
eliminating these ground noise pointings from our
list of good candidates would be a big improvement
to the system (see future research in section 9).

Figure 4: Small part of a plot of Time (X-axis)
vs DM (Y-axis) containing characteristic type
of ground noise

8.1. Detecting Known Periodic Pulsars

Although our algorithm is intended to find irregu-
lar or single-burst pulsars which will not show up
using a Fourier transform analysis, it is also very
efficient at finding periodic pulsars. Because our
list of known pulsars only gives pointings where a
pulsar could possibly show up, we cannot use this
directly to check if we have found all previously
know pulsars. We do know however that there are
about 60 known pulsars in the region of our dataset
and that we have generated a list of 90 pulsars. The
surplus could be explained by the fact that strong
pulsars show up in multiple pointings.

Below we can see that the results above 10 DM are
very reasonable. We have classified the candidates
into three types, being pulsar samples, RFI-noise
samples which contain a lot of RFI, and random-
noise samples that are reasonably empty, but con-
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tain a few higher pulses. We only classified point-
ings as containing pulsars if they were clear exam-
ples, so it is possible that some of the random-noise
samples contain (weak) single-burst pulsars. We
can see that when the scores drop, the percentage
of noise increases. The 154 pointings with a score
above 20 (and above 10 DM) however contain 90
pulsars and 64 noise samples of which 47 are in the
20-25 score interval. We think this is a good result.

Figure 5: Plot of Noise vs Pulsar ratio (from
the results above 10 DM)

8.2. Detecting Known Single-Burst Pulsars

It was hard to test if our program was good at find-
ing single-burst pulsars since we only had a list of
3 known single-burst pulsars (for an example see
figure 6). Our program however found all these 3
single-burst pulsars (though one of them was be-
low 10 DM). When evaluating our list of potential
pulsars we also found a set of pulsars which pulsed
weakly and only 2 to 5 times in 120 seconds which
would be hard to find with Fourier analysis. These
pulsars aren’t single-burst pulsars by definition, but
show that our technique of finding pulsars is also
successful for weak and irregularly pulsing pulsars.

Figure 6: Plot of Time (X-axis) vs DM (Y-axis)
containing a single-burst pulsar (in G12380-
168)

8.3. Detecting New Pulsars

Since our system is to be used for the detection of
new pulsars it must be efficient at finding pulsars.
Although our results indicate that our system is in-
deed efficient at finding pulsars it does not contain
an automated method to check if the found pul-
sars already exist. If this would be done automat-
icaly our system could be used very efficiently to
find new pulsars in a dataset. We think researchers
would be more interested in scores between 20 and
30, because the most weak or irregular pulsars (that
are otherwise hard to find) tend to show up in this
score-range. Also our ordering of scores makes it
very easy to work through the list from probable
pulsar pointings to less probable ones, saving the
trouble of working through all the pointings.

When evaluating our results, we also found a point-
ing which looked like it might be a (weak) pulsar,
and that wasn’t yet known. We asked an expert
(Dr. J.W.T. Hessels) to evaluate this pulsar for us,
but it is yet to be decided if this pointing indeed
contains a pulsar. To truly know whether or not
there is a pulsar located in that particular point-
ing, we will have to collect new data from the GBT
to see if pulses at the same DM show up again. In
figure 7 a plot of this possible pulsar can be seen,
with two small bursts at DM 112.

9. Conclusion and Future Research

At the moment we are doing very little preprocess-
ing on the data to remove noise. Especially under
10 DM, this is problematic for our algorithm. At
the moment we have no adequate solution for deal-
ing with the noise under 10 DM− when we know
beforehand we should be seeing a pulsar below 10
DM, we can run the algorithm on this particular
pointing and the pulsar under 10 DM will pop up.
If we do this for all pointings however, too many
false positives will show up under 10 DM, which
will make the subsequent processing of the pulsar
candidates tedious.

Because this ground noise that is bothering us be-
low 10 DM seems consistent, it might be possible
to learn the various attributes of this noise and fil-
ter it out. It would be very interesting to see how
many of the various types of noise could be filtered
out with learning techniques in general.

The combination of the scoring filters to the final
score remains a bit arbitrary, as the relations were
only found with trial and error. It would be inter-
esting to introduce perhaps some more filters and
test different methods of interaction.

7



Figure 7: Plot of Time (X-axis) vs DM (Y-axis) with 2 bursts at 112 DM

Finally, it would of course be very useful to pro-
vide an interface which would immediately compare
the pulsars it would find in pointings to a database
of known pulsars, and thus automatically label the
pulsars which it thinks it already recognizes. At
the moment, the comparison with existing pulsars
is done by looking up the coordinates of the point-
ing and comparing it to the coordinates and DMs of
pulsars in the neighborhood. While feasible when
dealing with smaller datasets, it would of course be
preferable to have the system distinguish between
‘new’ pulsars and ‘old’ pulsars.

All in all, we think that these results show some
promising possibilities for the automatic detection
of single and multi burst pulsars. With some more
work on the interface, we think that some of this
work could become part of a very useful pulsar find-
ing tool. We also sincerely hope that the plot in
figure 7 is indeed a pulsar!

Usage of the algorithm which was implemented in
python and C is detailed in appendix A. It takes
tar.gzed data from the GBT as input.
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A. Usage

Usage guide for analyzeData.py

N.B. python2.5 is required.

This program serves mostly as a wrapper for the analysis functions. If

you want to view or edit the code of the scoring algorithm, please see:

’../plot/analyze.c’

Assumed as data input are one or more tarfiles (’G*.tar.gz’) containing

the folder plus file:

’SINGLE/*.singlepulse’

Files not adhering this naming scheme will not disrupt the analysis of

other files, but will print an error like:

’G13462-084_SINGLE: ERROR: File "ls:": File not found’

There are two basic sequences of operations you might want to follow.

First (1) is a test of all the data with the current analysis, and

plotting/viewing good candidates. Second (2) is a repeated test on some

data-sample with changes in the scoring algorithm.

(1) Commands:

‘python analyzeData.py -nsA <datadir>‘

‘python analyzeData.py -nlt <threshold>‘

‘python analyzeData.py -nlt <threshold> -PA <datadir>‘

First run ‘python analyzeData.py -nsA <datadir>‘ where <datadir> is

a directory containing the .tar.gz files (’ -A <dir> ’ can be called

multiple times to use additional directories). This operation

analyzes all the data and saves the result for future use. It should

take approximately 15 to 30 minutes.

Next, run ‘python analyzeData.py -nlt <threshold>‘ to create output

files with the results over the given score <threshold>. At the time

of writing, a threshold of 25 looks reasonable for decent

candidates.

The output is ordered by score. Five files are created:

- ’outputOver<threshold>.txt’

# Contains all data of pointings over the <threshold> where the

# highest score is found above 10DM.

- ’outputOverview<threshold>.txt’

# Contains an overview of the data of pointings over the

# <threshold> where the highest score is found above 10DM.

- ’outputOver<threshold>Under10DM.txt’

# Contains all data of pointings over the <threshold> where the

# highest score is found below 10DM.

- ’outputOverview<threshold>Under10DM.txt’

# Contains an overview of the data of pointings over the

# <threshold> where the highest score is found below 10DM.

- ’output.txt’
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# Contains all analyzed data, including those under the threshold.

# This serves mainly as reference and should be ignored.

If you want to plot the pointings with a graphical indication of the

DM where the highest score was found, the program needs the location

of the data, but will not reanalyze the data unless told to do so.

Currently only high scores found above 10DM will be plotted.

Run ‘python analyzeData.py -nlt <threshold> -PA <datadir>‘ to this

end. This will create two .bmp files for each pointing:

- ’DMSigma_tmp<tarfile>.list.bmp’

# This shows the DM (horizontal) versus Sigma (vertical) plot,

# just for reference.

- ’TimeDM_tmp<tarfile>.list.bmp’

# This shows the Time (horizontal) versus DM (vertical) plot.

# Higher sigma are drawn with larger circles. Two blue bars

# indicate the DM where the highest score was found.

(2) Commands:

‘python analyzeData.py -nkKPf <tarfile>‘

If you want to review the effect of changes in the scoring

algorithm, you can run the command above on a single file (although

’-A <datadir>’ can still be used as well). This will create output

in a similar fashion as described above (regardless of score, but

still with plots only over 10DM), and keep the tarfile unpacked for

reuse. Note however that the output[...].txt files and plots WILL be

overwritten with every run.
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