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Abstract

Rapid prototyping has been in the limelight for the past decade. 3D printers have
an evocative name that promises production of complex parts on demand. Yet cur-
rent practice doesn’t quite deliver on these promises of advanced manufacturing.
Existing digital fabrication tools enable repeatability and precision by using codes to
describe machine actions. But the infrastructure used for digital fabrication machines
is difficult to extend, modify, and customise. It is very difficult for the end-user to
incorporate more forms of control into the workflow. Machine design today is largely
the same as it was 50 years ago, despite decades of progress in other fields such as
computer science and network engineering.

I argue that we need to transition from rapid prototyping to rapid prototyping of
rapid prototyping. To make diverse goods, we need diverse tools. To develop diversity
in digital fabrication tools, we need reconfigurable and extensible infrastructure for
machine building.

Using insights from object-oriented programming, end-to-end principles in network
design, and the open system interconnection model, I propose a new paradigm for ma-
chine building called object-oriented hardware. In this paradigm, software objects and
hardware objects are peers that have procedures, methods, ports, and presentations.
Machine building modules are available as software libraries are to programmers. A
machine instantiation is an assembly of objects situated in a particular context.

Using this approach, a thing together with the machine that makes it becomes an
application. This method transcends the additive versus subtractive manufacturing
comparisons by considering both types of rapid automation. Development work is di-
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vided into infrastructural engineering, which develop modules for use in any machine,
and application development, which develop specific machine instantiations.

Here I present technical implementations of machine building infrastructure first.
These include distributed networked controls, reconfigurable software interfaces, and
modular mechanical machine components. Then I present machine instantiations
that use this infrastructure to demonstrate its capability. Finally to evaluate the
object-oriented hardware paradigm in the wild, I observe machine building novices
using these tools in both a workshop format and in the Fab Lab network for machine
building. To make the modular components for machine building accessible in this
context, I developed an extensible toolkit for machine building—the Cardboard Ma-
chine Kit. Using this toolkit, novices were able to make a wide range of machines,
demonstrating the power of this method.

Thesis Supervisor: Neil Gershenfeld
Title: Professor of Media Arts and Sciences, Program in Media Arts and Sciences
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Chapter 1

Introduction: Rapid Prototyping

of Rapid Prototyping Machines

Personal fabrication sounds like something one might buy in the future. Get your

personal fabricator, available at any store that sells personal computers! It certainly

evokes the convenience promised by Star Trek’s ‘Replicator’. Being a digital fabri-

cation researcher at a well-supplied lab, I already inhabit part of that future. I can

theoretically already make almost anything on existing industrial machines [26]. Parts

of digital fabrication research are trying to distribute that future more evenly—a fu-

ture where anyone can make almost anything. In that future we have faster, cheaper,

better tools. We have better curricula for educating a society of makers.

That future sounds pretty good. But I think we need something more.

Since starting my graduate work, I have set up many Fab Labs, such as the one

depicted in Figure 1-1, in five different continents. I have taught in more than 50

Fab Labs. I have set up labs as part of a tribal council in Alaska, at NASA, in

farm schools in rural India, in navy shipyards, at amputee clinics, in midwestern

community colleges, in Saudi Arabian corporate visitor centres, in design schools,
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in libraries, in museums, and also pop-up labs at the UN General Assembly, the

White House, Capitol Hill, and the World Economic Forum. I have seen all kinds

of people interact with all kinds of digital fabrication machines and software, from

young children to Nobel laureates. I speak from extensive experience working with

both many kinds of machines and many kinds of people when I say that our current

digital fabrication technology does not encourage wide participation.

Figure 1-1: A Fab Lab in Vestmannaeyjar, Iceland. Featuring the fab lab standard
inventory of milling machines, electronic workstations, laser cutters, 3D printers, and
more. Image courtesy Frosti Gislason.

If anyone should be able to make almost anything, who makes the tools for them to

do that, and why? If we want everyone to have access to fabrication, why don’t we

expect the variety of tools to reflect the variety of applications from that variety of

people? Does making tools accessible just mean making tools we are already familiar

with faster, cheaper, and easier to use?

I believe the future holds a whole new class of machines and tools that are designed,

modified, and reconfigured by those who use them.

There are two perspectives—two movements that have shaped the research I present
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here. One is ‘classic’ engineering and technology. MIT is an ideal stage for observing

this world view—a place destined to develop technology that can change the world.

The other is the ‘maker movement’, the excitement over which has been propelling

experts and novices alike [2]. Fab Labs, hackerspaces, and maker faires provide a foun-

dation for broad-based engagement with technology, digital fabrication, and science

show-and-tell.

Both of these perspectives focus attention and energy; both have tangible outcomes.

They give us self-driving cars, solar energy, digital literacy, educational outcomes.

Both are at times also problematic—exclusive, political, erroneous, gendered, com-

mercial, hyped [21; 4]. In my work, I see problems with both ‘engineering’ and ‘mak-

ing’. I don’t believe simple technological interventions alone can provide solutions

to complex social issues. I don’t believe that a maker revolution has democratised

technology such that anyone can come up with their own solutions. However, I’m

optimistic about what comes after technosolutionism [46].

A driving force for digital fabrication research is developing the ability to manufacture

quantities of one without high cost or loss of precision and complexity. I believe that

to make this happen, we need to make the making of tools accessible at a personal

level. We need accessible ways to make machines. This does not only include mak-

ing machine building technologies, but also includes developing skilled communities

of practice. Involving people in developing the technology they use does not only

transform the technology, but transforms the people as well. This inclusion is not

currently a common social practice; our technological infrastructures poorly support

it.

It is worthwhile to consider the historical context of the digital fabrication equipment

we know today. The first computer-numerically controlled (CNC) milling machines

were developed so that the highly precise parts that were being produced during the

Cold War could be made more quickly and reliably. CNC mills removed a precarious

16



reliance on skilled workers to produce precise parts. By making a machine capable

of producing the kinds of parts that previously only highly skilled and experienced

machinists could make, managers were able to shift costs from the wages of skilled

workers (who might leave) to investments in machines that would run around the

clock. Machines were developed to increase technical capacity, but also as a political

tool to restructure labour relations [59; 63].

Thus the machine became the most important asset for manufacturing, not the hu-

mans who ran them. The original user model for digital fabrication assumed the

machines would be operated by an insubordinate workforce with no interest in im-

proving the technology they were being replaced with. The tool-maker was separated

from the tool-user.

Since the 1950s, little has changed in this model. For example, the purchase of a wire

EDM (electric discharge machining) in our lab came with several days of training by

the vendor’s technicians, who had a tough time explaining when to use the keypad,

the mobile keypad, the keyboard, the touchscreen, or the extra buttons that for

some reason are on the side. The machine only takes certain types of .dxf files (a

specific file type for specifying geometry, used here for toolpaths) with filenames that

are shorter than eight characters. Despite these arbitrary usability limitations, the

height of the workbase of the EDM is guaranteed to be within 30µm at all points,

which demonstrates the extremely high precision of this tool. The expectation was

that there would be an expert who would be in charge of making the toolpaths for

the EDM and a machinist who would be in charge of running the EDM, and that

they would get used to the quirks of the machine. The machine is not designed for a

group of casual users who also use all the other digital fabrication equipment we have

in our lab. These digital fabrication machines are designed to have dedicated staff,

and those staff are not expected (or able) to modify the machines.
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1.1 If it’s cheaper, more people will buy it

Digital fabrication machines are not only hard to use. They are also inaccessible

because of their cost. Many of our lasers, EDMs, or waterjets cost hundreds of

thousands of dollars. How could people without big research lab budgets still gain

access to the precision that digital fabrication affords? The maker movement has

primarily focused attention on making digital fabrication equipment more accessible

by making it cheaper.

For additive manufacturing Jones et al. [39] developed a Replicating Rapid Proto-

typer, or RepRap, to help grow the number of 3D printers in the wild in 2006. Many

of the RepRap parts can be printed inexpensively on a RepRap, which not only helped

the exponential growth of RepRaps, but also grew the number of design iterations by

the printer’s open source community [17].

Malone et al. developed the Fab@Home, another open source 3D printer, at around

the same time [51]; it was not self-replicating, but it did provide users with design

files and bills of materials for making their own instantiations. The MIT Center for

Bits and Atoms class How to make something that makes (almost) anything1 provided

another rich space to develop personal fabrication machines (not only limited to 3D

printing) such as the MTM Multifab by Ilan Moyer and Max Lobovsky in 2009 or a

small format milling machine Jonathan Ward and I developed out of HDPE kitchen

cutting boards called the MTM Snap in 2011 (see Figure 1-2). But despite freely

available design files, sourcing the right parts and assembling the machines was still

a high barrier to entry. Cost is only one factor in accessibility, and these machines

were still fairly inaccessible in terms of expertise required.

Commercially available 3D printer kits inspired by these early collaborative designs,

such as the Makerbot Thing-o-matic or Ultimaker 1, were released soon after the

1MAS.865, documented at http://mtm.cba.mit.edu.
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Figure 1-2: The MTM-Snap: A milling machine that can be made on another milling
machine, such as the ShopBot (shown left). The ShopBot is included in the stan-
dard Fab Lab inventory fab.cba.mit.edu/about/fab/inv.html, accessed Feb 2016.
The MTM Snap designs are available at http://mtm.cba.mit.edu/machines/mtm_

snap-lock/index.html, accessed Feb 2016.

first open designs. This mitigated the issues with part sourcing and also created a

commercial interest in developing clear assembly instructions. At a Maker Faire in

2012, O’Reilly editor Shawn Wallace counted a total of fifty-five distinct 3D printer

designs being presented [86], many of them for sale as kits. At the same time, existing

fabrication companies such as ShopBot Tools (whose tools we used to bootstrap the

MTM Snap, see Figure 1-3), Epilog Laser, and Roland Digital released lower cost,

smaller format machines such as the ShopBot Desktop, the Epilog Zing, and the

iModela. Again, accessibility here was mostly addressed through cost.

The intent of the MTM Snap project was to produce a low-cost, modifiable milling

machine design that anyone with access to a Fab Lab could make. We failed at that

goal. We made a low-cost, modifiable milling machine we could make. It was too

hard for someone without prior experience in electrical and mechanical engineering

to source the parts and build the machine, and for people with sufficient experience
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Figure 1-3: Two versions of the MTM Snap Jonathan Ward and I demoed at the
World Maker Faire with ShopBot in 2012.

it was often easier (and likely more satisfying) to develop machines made with locally

available hardware, such as the Black Mamba developed at MISiS by Dmitry Sukhot-

skii, Vladimir Kuznetsov, et al.2 [79]. The MTM Snap was inaccessible in that it

lacked both documentation and user-friendliness3 and did not make up for it in the

fabrication capacity it offered. After all that work, it was still just a simple circuit

board mill with a work volume of under 15 × 15 × 10 cm. Nonetheless, many of core

design principles of the MTM Snap were reproduced later in others’ machines. For

example, the snap construction method of HDPE was reused widely in other machine

designs, as was the control circuit.

2The Black Mamba was partially based on the MTM Snap with great enthusiasm for the open
source design, but none of the design files were actually reused. The MTM Snap design was not
sufficiently universal to be able to accommodate the very different markets and parts that our
Russian counterparts had access to. Nonetheless, it was an object that we could base our cross-
atlantic collaboration on.

3Our method for supplying toolpaths involved downloading C and Python source code plus
a bunch of dependencies, compiling the control software, and running it with a custom-flashed
Arduino, with an added breakout board for motor control you had to solder together yourself. Once
you got it running, the machine could make more of the custom breakout boards, but as far as we
know no users besides us, the designers, got to this point.
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Meanwhile, the commercial success of maker-oriented digital fabrication machines be-

gan to rely heavily on their usability and reliability—factors in accessibility other than

cost. Makerbot Industries and Ultimaker released plug-and-play 3D printer models

instead of build-it-yourself kits. Features such as auto-calibration and one-button in-

terfaces became commonplace. By 2013, the personal fabrication machine space was

no longer occupied predominately by the self-produced RepRaps or Lasersaurs, but by

machines that were commercially available. This commercial market has only grown,

with, for example, the preorders for the personal-use-oriented laser cutter Glowforge

exceeding 28 million USD in late 2015 [76]. By now, the personal fabrication market

is a serious contender for machine development, alongside the previously dominating

industrial fabrication markets.

1.2 Versatile, yet easy

User interface and user experience work being done on commercially available ma-

chines such as Glowforge’s interactive laser cutter is a very good thing; I hope one day

I never have to use a buggy 32-bit Windows driver to run a machine again. I applaud

machines getting increasingly faster, cheaper, and more precise [29]. However, the

most user-friendly of interfaces still contain—or even design in—many limitations.

As Anthony Dunne writes about electronics: “User-friendliness helps naturalize elec-

tronic objects and the values they embody. For example, while electronic objects are

being used, their use is constrained by the simple generalized model of a user these

objects are designed around: the more time we spend using them, the more time we

spend as a caricature.” [19]

The interfaces to digital fabrication are still built on a user model where the tool-

maker has been separated from the tool-user. Therefore, usability of those interfaces

is based on the assumption that the people who are going to use the machines are not
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able to or interested in modifying them—n00bs. This user model has been applied

to both kit machines and commercial machines. A machine kit provides convenience

of a pre-specified bill of materials at the cost of versatility. Commercially successful

machines now provide user experience, but at the expense of modifiability. These

machine types are predicated upon the notion that as a user of a machine you are

not expected to reconfigure it.

In a famous Xerox PARC video now known as “When User Hits Machine”, anthro-

pologist Lucy Suchman recorded the almost-slapstick performance of two prominent

researchers trying to use the two-sided paper functionality of a photocopier [77]. The

complexity of Xerox photocopiers was meant to be a selling point for the machines.

But the machines Suchman et al. analysed were of the first batch that were marketed

not to a dedicated user (i.e. a technician) but to a casual user. Customers reported

that the machines were unusably complicated. While the marketing of Xerox at the

time promised the ease of a big green button, the reality was that to use the machine,

the user inevitably needed to learn more about it.

Suchman points out that the interface is a prescriptive representation—a plan of

use. These interfaces, instructions, or recipes might be made in one place, such as

the design laboratories of Xerox. But they anticipate use in a different context—a

photocopier in an office of casual users. How that situated action of use unfolds needs

to inform the design of meaningful interactive interfaces as much as their assumed user

models. One anticipates use as the other enacts, and through iterations of planning

and observing we can design powerful and meaningful human-machine interfaces.

Contemporary interactive interface work for digital fabrication machines is still com-

paratively superficial—we are at the stage of big green buttons. Usability work for

digital fabrication machines right now means developing more and more convincing

plans. For example, the user/machine interaction is very well-scripted and prescribed

for printing ‘demo prints’ on 3D printers. Printing 3D models that have been opti-
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mised for the printer leads the machine user through an ideal experience. But the

difficulty of optimising the orientation, temperature settings, material support selec-

tions, and so on for a new 3D object can make the initial demo part print experience

seem like a false promise. The language to describe personal fabrication sounds a lot

like the marketing language Xerox also used in the 1980s to describe the office of the

future. But the user inevitably needs to learn more about the 3D printer.

Even if all settings could be optimised automatically, prescriptive use limitations

of digital fabrication machines remain. Even if ease of use, speed, and cost are

taken to their limits for digital fabrication, machine users are still being cast into the

separate roles of part designer, drafter, toolpath planner, and machine operator. The

separation between these roles made sense historically; a machine operator needed

different expertise and tools than a drafter. These limitations are no longer relevant,

yet the tools used in each role are still mostly separate. An example is the distinction

between CAD software and CAM software.

Translating from tool to tool can seem like a bad party-game of telephone where

progressively more design intent is lost [15; 48]. These issues run deeper than the

user interface—they extend to the very structure of information passed from tool to

tool. CAD and CAM tools still rely on file formats, such as g-code or .stl, that have

not changed much since their inception in the 50s and 70s, respectively.

G-code is only a format for sending position coordinates to a milling machine, along

with a few more commands like spindle speed, coolant flow, etc. [73]. Any accelera-

tion, deceleration, or control flags need to be implemented at the g-code interpreter

level, fragmenting control into subsystems that are hard for end-users to modify. The

interpreter is the computer (or microcontroller) connected to motor controllers; the

user computer streams g-codes to the interpreter which are then executed. The user

computer does not keep track of where the interpreter is in execution, which means

that the user interface does not always know exactly where the machine is. As a
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result, it is very difficult for the end-user to incorporate more forms of control into

the system. For example, if a user had issues with material discolouring in a 3D

printer due to excess heat, and wanted to increase the flow rate of the extruder when

scorching can be visually measured, that modification would have to be implemented

in the g-code interpreter firmware. Originally, this separation was necessary because

the bandwidth between the user computer and the interpreter was very limited. This

is no longer the case.

For 3D printers, designs can be created with any CAD software but typically will be

exported as STereoLithography (.stl) files and ‘sliced’ by a machine-specific CAM tool

to create tool paths. On 3D design sharing websites such as Stratasys’ Thingiverse,

the most commonly shared 3D print files are therefore STL files. STL files give

a boundary representation of an object by specifying a list of triangles with their

surface normals. Typically this means that the original design file which may contain

curves for specifying volumes needs to be approximated with triangular facets. A

high resolution approximation of complex curved surfaces might result in millions

of triangles and gigabytes of data even if the original design file was much simpler.

Unlike the original CAD source files, much of the design intent is lost with STLs (for

example, a sphere saved as an STL will have no attribute such as radius). Many 3D

designs are shared online with permissive licenses for modification and reproduction

[53], yet the file formats don’t carry with them the original design intent [48].

G-code and STL files are only two examples of the limitations of file formats and

software workflows of digital fabrication. Some efforts have been made to create

successor to the STL file format called Additive Manufacturing File format (AMF

or 3MF [49]), although it has yet to be widely adopted and still has many of the

same issues as STL. Functional representation CAD software such as Antimony [40]

uses math strings to describe objects, which is often both a more efficient and precise

method than boundary representations. However, to create machine instructions,
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the design files still need to be exported as STLs. Robotic arm users are starting

to develop alternate open control methods such as Kuka Parametric Robot Control

[10], but they are still architecture specific. In short, while there are many individual

laudable efforts for improving parts of the digital fabrication software pipeline, the

translation from one system to another is rarely routine.

I will not dwell much more on the implementation details of existing software or ma-

chine tools in the remainder of this document. However, my research is in direct re-

sponse to the limitations I have encountered with the file formats, software tools, and

digital fabrication machines I’ve dealt with. While I have enumerated separate roles—

designer, drafter, toolpath planner, machinist—I do not believe they are relevant any

longer. I believe we get new capacity for action as we develop new configurations

of humans, tools, and machines. Here I draw from Suchman’s analysis of reconfigu-

ration between humans and machines [77] for understanding where to develop that

capacity, and from theories of object-oriented programming and end-to-end princi-

ples in infrastructure design presented by Sutherland, Goldberg, Saltzer, et al. [81;

30; 71] to understand how to. To make progress, I believe we need more than an

iterative or evolutionary refinement of existing practices. It is not enough to just add

some XML markup to STLs. We need reconfigurable and extensible technology.

1.3 Personal Computers/Personal Fabricators

The trajectory of personal fabrication is often compared to the trajectory of personal

computing. The first digital computer, ENIAC (on the left in Figure 1-4), was de-

veloped in 1946 as part of a wartime effort to calculate artillery firing tables. By

the 1970s the technology was redirected to personal computing, making computers

available to casual users at fraction of the cost of ENIAC (and at a fraction of the

footprint). In 1973 the Xerox Alto Personal Computer released many features that
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Figure 1-4: Left: The ENIAC, one of the first digital computers, developed in 1946.
Right: the Xerox Alto, one of the first personal computers, released in 1973.

are now standard: WYSIWYG editors, graphical interfaces, and pointers (see Fig-

ure 1-4). The technology that was only available to governments fighting wars some

twenty-five years prior had been adopted, reduced to practice, and improved with

usability features.

There are many commonalities between personal computing and personal digital fab-

rication. The first personal computers were originally available as kits, just like the

first desktop 3D printers. The price of a personal computer dropped over time de-

spite its speed going up, as with 3D printers. However, the analogy does not hold

up quite as well for other details. A calculation done on a mainframe computer will

produce the same answer as the same calculation done on a personal computer—on a

personal computer it may just take much longer. But the parts produced by desktop

3D printers cannot be made to the same tolerances as the parts that were produced

on the first CNC mills. Nor are they made with materials of similar quality. Digital

fabrication machines shrank to fit on our desktops and budgets but also sacrificed

precision and accuracy in the process. PCs might be universal computing devices,

but no fabrication machine is a universal fabrication device.

Personal computers provided a platform for users to develop software that would run

on those personal computers. The personal computer itself was a tool that aided in
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the improvement of the personal computer. This allowed a participatory and fast

innovation process to take place in personal computing. The continued development

of personal fabrication tools seems to have instead given rise to more commercial

entities who are not interested in developing or sharing standards [53]. In comparison

to the modularity and standards that were crucial to the development of the PC,4

digital fabrication toolchains are rather arbitrary. Their interoperability often seems

to depend on who their parent company is—the Autodesk/HSMworks/Eagle alliance?

Or the Solidworks/Catia/Altium camp?—instead of any over-arching standard.

So while digital computing may have been repurposed into personal computing in a

few decades, I argue that we have a long way to go for personal fabrication. I have

participated in helping spread access to digital fabrication through Fab Labs and

certainly believe there is value in continuing to do so. However, I don’t believe that

just developing cheaper and user-friendlier machines that adhere to the original CNC

user model (including machines such as the MTM Snap) will lead to widespread access

to the precision and accuracy of industrial digital fabrication. The current range of

applications is only a narrow slice of what is possible. Each user’s application varies

slightly. Each problem space needs a specific approach. I argue that for all of these

problems, people need the tools to build their own solutions.

1.4 Universality

In current machine building practice there is a focus on universality of machines (such

as the Universal Desktop Fabricators in [85; 47]), a one-machine-fits-all solution. This

is the model we are familiar with from science fiction: all rooms are outfitted with

the same replicator. Replicators are easy to use, yet very powerful. Replicators can

4The use of ‘upgrade’ as a intransitive verb started in 1950, whereas ‘update’ had its first recorded
use in 1944—both during the early days of computers.
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make simple things like tea, or complex things like clarinets or engine parts, all with

the same user interface. The replicator makes assumptions about what you want by

inferring exactly what you mean when you say “Tea, Earl Grey, hot”. However, if

we take an existing tool such as a sewing machine as an example, we can see a wide

variety of machines that differ slightly depending on the intended user. Industrial

sewing machines can sew very quickly, but might offer only a few stitch options. Home

sewing machines might be more tailored to quilting or tailoring. Children’s sewing

machines are smaller and outfitted with specific safety features. Sewing machines are

a well established technology that have identified many different types of users. The

machines are made for those users. Is personal fabrication going to be any different?

Will an aerospace engineer need the same capabilities in their fabrication equipment

as a circuit designer?

There are too many niches of possible users of automation and digital fabrication to

be able to cater to them all with a universal tool. There are problems in principle with

the notion of universality for tools. Meanwhile, variations of 3D printers are entering

the market at a dizzying pace, but they offer very little in terms of after-market

customisability or extensibility. Automation tools for custom processes need domain

expertise to configure and use, are expensive, and don’t work that well. These are

not problems in principle, but problems in practice. So how can we build the practice

of rapid prototyping of rapid prototyping machines?

1.5 A Playground for Building Machines

There is something fundamentally wrong with the infrastructure we are using to

build machines. Instead of waiting for the ultimate dream team to develop the per-

fect machine that is appropriate for all, why are we not creating the infrastructure

for everyone to configure personal automation themselves? In researching universal
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fabrication machines, we make the rather strong assumption that one machine could

be capable of fabricating all products. While it is possible to pair both the fabrication

of large objects and small features in a single tool, that makes the resulting machine

high in cost. Using a less precise large format machine or a highly precise but small

format machine might be preferable for producing the majority of products. The

obverse is perhaps more concerning: if the tools we have are incapable of producing

the good we want, should we then be expected make concessions on the goods we

produce? Why are we focussed on rapid prototyping of things, and not on rapid

prototyping of rapid prototyping machines?

It is easy to overlook the importance of accessibility while working at an institution

like MIT. My peers and I are already empowered to make machines. We have easy ac-

cess to expert knowledge and fancy tools. But I’m not arguing that making machines

is impossible. I’m arguing that making machines that make is not easy enough.

Access to precision manufacturing is available at large scale but not at low volume.

To still make precision manufacturing available at scale, we accept the compromises

of mass-manufactured products. Those compromises range from functional, to social,

to environmental, to cultural issues. Being able to have an automobile only in black

might not be a big compromise. But the compromises we make on labour conditions

or environmental impact are.

To manufacture goods at low volume without high cost or loss of complexity, we need

access to the precision and reconfigurability that digital fabrication provides. We need

an infrastructure that provides this access to a broad base. As personal computers

provided a platform for wildly diverse computing to happen at scale, we need personal

fabrication to provide a platform for wildly diverse fabrication to happen at scale.

In this dissertation, I propose a conceptual framework called object-oriented hardware

for machine design. Drawing from infrastructure implementation lessons learned in
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network architecture and computer programming, I introduce a separation between

machine infrastructure and machine applications. This paradigm crucially involves

considering a specific machine as an application (with capacity to produce a specific

good) rather than a (general purpose) tool or infrastructure. End-to-end princi-

ples guided the development of internet infrastructure and applications; I argue that

end-to-end principles should also be applied to machine design. In an object-oriented

hardware paradigm, machine building infrastructure is built up of modules that can be

configured to make machine instantiations, separating machine application develop-

ment from machine infrastructure development. In this dissertation I present specific

technical implementations of machine infrastructure within the object-oriented hard-

ware framework, including distributed networked controls, a framework for writing

software for machine applications, and mechanical modules for building up machines.

I consider all these implementations as objects that have interconnectivity across

domains. This means that software objects are peers of mechanical objects in an

object-oriented hardware paradigm. This enables easy (re)configuration of machine

assemblages. I finally make these implementations widely available and observe their

benefits as people use them to build machines using a Cardboard Machine Kit.

I hope that this work will help enable broad base participation in the development of

digital fabrication technology. Thank you for taking the time to read.
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Figure 1-5: A timeline from the first digital to the first personal computers, and
from the first time a milling machine was connected to a computer, to a Fab Lab,
to Fab Labs making machines such as the MTM Snap to rapid prototyping of rapid
prototyping machines.
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Chapter 2

Background and Related Work

The work presented in the next chapters draws from fields including advanced man-

ufacturing, robotics, material science, and computer science. It also is influenced by

commercial development of machines for makers and by commercial development of

client-side browser-based computation. This chapter lists some of these fields’ contri-

butions to digital fabrication as well as their influences on the work I present.

2.1 Automation and Manufacturing

Automation enables precision and accuracy in manufacturing, which in turn enable

speed and throughput. The first computer numerical controlled (CNC) machines

were developed to fabricate precise parts reliably [59]. CNC tools were not originally

intended to be used for mass production. Industries around ‘advanced manufacturing

techniques’ (AMTs), such as computer aided design (CAD) or computer aided manu-

facturing (CAM), were also initially more concerned with precision than throughput

[41]. However, paired with infrastructural improvements these techniques quickly led
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to mass-manufacturing capabilities of small-toleranced goods [9]. Flexible manufac-

turing systems (FMS) were built to carry materials to and from machine tools as

well as to aggregate their instructions [38]. A contemporary example in the wild is

Apple Inc.’s use of CNC milling machines to produce the enclosures of their computer

and phone products [72]. A single product from the Apple line sells on the order of

millions of units per year, so the reprogrammability that CAM enables is hardly used.

Instead, the products use the precision of the manufacturing process to emphasize

connotations of luxury and expense in their designs.

The market focus on production throughput has come somewhat at the expense of

focus on startup costs. CAD/CAM systems were widely deployed in manufactur-

ing plants, where initial investment in both capital and system expertise are quickly

amortised over the operating expenses. When manufacturing products in low volume,

those startup costs can be very high in comparison to the operating costs of a short

run. As a result, goods that are produced in low volume with high precision are often

prohibitively expensive. Here we see, for example, that highly precise and complex

goods such as cell phones or automobiles are manufactured in volume. Custom elec-

tronics or electromechanical systems are often reserved for high-cost markets such as

the military or medical devices.

Despite the limitations of existing advanced manufacturing, we draw heavily from

these practices when developing the software, electronics, and hardware that I de-

scribe in the following chapters. We evaluate the bottlenecks with existing manufac-

turing software input and file formats [92] and use that information to inform our

system design. We use the communication protocols that are standard to machine

control and flexible manufacturing systems such as Profinet as the benchmark for

minimum levels of bandwidth and robustness [64]. We use the extensive research in

mechanical systems, especially with respect to machine stiffness and vibrations, to

inform the designs of the machines I present [74].
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2.2 Architecture

In the field of architecture, thousands of unique parts are the norm rather than

the exception [15]. Buildings like the MIT Stata Center (designed by Frank Gehry,

fabricated by A. Zahner Co.) use complex curves and precision-cut sheet metal as

building blocks. Parametric design tools have completely revolutionised how architec-

tural designs are produced [54]. Digital fabrication machines like laser cutters or 3D

printer were used extensively in architecture studios. Design tools that were originally

developed for the aerospace industry were appropriated by architects for the mod-

elling of complex surfaces and structures [7]. Robotic arms that were originally de-

signed for automobile manufacturing are being used for architectural construction [31;

32]. 3D printing is being employed at architectural scale [8], and even autonomous

flying robots are being tested for construction [89].

For many of these tools architecture is appropriating technology originally designed

with other applications in mind. But architecture in turn also improves or redesigns

these tools. Robotic arms are notoriously tedious to program, with proprietary path

planning and simulation packages. Architecture practicioners have developed open

alternatives for machine control that are now also being used in manufacturing [11;

10]. Architects develop software tools for their workflows, such as Rhino with its

dataflow programming language Grasshopper (and its rich user-created ecosystem of

add-ons), or by combining structural engineering software with design software [58].

We are heavily influenced by the model, prototype, test, and critique architecture

workflow in the development of our machines. We draw both from the architectural

practice of using technologies for unintended purposes and reiterating on those tools

to fit the task at hand. The futurist narrative of how architecture will relate to

the built environment is also of inspiration [84]. We especially take advantage of

parametric design tools, fabrication methods, and design critique.
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2.3 Robotics

The field of robotics deals with many of the same system integration problems that

digital fabrication machines have; it needs to coordinate motion and work through

mechanisms, control systems, and software interfaces. Robotics on top of that also

deals with issues of portability, mobility, and weight limitations. For machine tools,

we learn from how these issues have already been tackled in robotics. Industrial robots

often work tirelessly as welders, painters, or cutters in factories and manufacturing

plants. However, here we consider specifically the influence of academic robotics.

Modularity is a clear benefit in robotics. Systems can be extended by adding extra

robots and repairs can be carried out offline as replacement parts are employed. This

introduces versatility, robustness, and potentially also lower cost of manufacture. The

interconnect used in modular robotics is therefore of great influence in our work [96;

95].

Unlike in machine tools, robots commonly use parallel manipulators despite the in-

creased complexity of their control [34]. The advanced control techniques and the

corresponding communication protocols widely used in robotics therefore also influ-

ence our methods. Closed loop control is standard in robotics, yet still not widely

used in automation systems. We take advantage of the work that has been done in

robotics to make closed loop control more accessible.

Robotics researchers also consider new modes of human-computer interaction for

machine tools. We are indebted to novel work on interaction such as the hand-held

smart carving tool FreeD [94], or the smart router that uses computer vision for

position [68].

Digital materials or programmable matter are an extension of modularity across all

length scales. Robotic sand, reconfigurable blocks, or folding robotics chains all fall
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under this category [12; 28; 36; 93]. A future in which all matter is programmed in-

stead of assembled is a paradigm that also influences our design choices for structuring

manufacturing infrastructure.

In A Method for Building Self-Folding Machines, Felton et al. describe a method for

active folding of robotic structures [23; 24]. By taking advantage of the precision of

CNC scoring and cutting as well as cleverly designing error-correcting joints, folding

can be a very fast and precise construction method. Especially with our work on

cardboard construction kits for precision machine design, we draw inspiration from

this body of work [60; 90].

2.4 Self-Assembly

Robotic programmable matter or digital materials harness systems of self assembly

(or codes describing materials) that have long existed in biology or chemistry. If all

molecules can be made out of a limited number of types of atoms, or if living tissue

can be made out of a finite number of amino acids and building molecules, then

why can we not design the construction of our built environment in the same way?

Self-assembly in chemistry and biology is therefore also of influence in our work [88;

87]. Specifically how codes can describe materials directly rather than describing the

instructions to the machine building the object.

Assembling digital materials for the production of electronics or composite materials

has been explored [42; 13]. How to get nano-scale robots to assemble these struc-

tures is also an ongoing research investigation [18]. Finally, taking advantage of how

materials may change over time is the subject of ‘4D printing’ [83]. While our work

does not directly relate to self-assembly or digital materials, we believe that we are

part of the lineage going from codes giving machine instruction to codes describing

materials.
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2.5 Materials

Material science has recently had great impact on digital fabrication. Instead of

etching or milling circuit boards, functional inks can be used to write PCBs directly

[70]. Functional inks have had great influence on additive manufacturing especially

with researchers developing processes for 3D printing tissue scaffolding, electronics,

antennas, lithium ion batteries, etc. [44; 91; 80; 1]. These kinds of processes have

also put pressure on developing new file formats and data representation models for

3D printing, for example to accommodate multi-colour or different levels of gloss [20].

These materials for additive manufacturing are not limited to current 2D deposition

methods such as inkjet printing or fused deposition modelling. Because of these

materials, there is also pressure to develop new additive manufacturing workflows

[33]. Voxel8 is a new company that recently released beta-versions of their printers

that can make 3D circuitry [5]. These new materials and the workflows and end

effectors has influenced our machine development work.

2.6 The Maker Movement

The general population has typically been of little interest to the researchers from

the preceding sections. However, since the turn of the 21st century there has been a

marked increase in attention to making. The ‘Maker Movement’ engages the general

public in discourse on technology, craft, and the politics of DIY [2]. Maker Faires,

as a kind of technology show-and-tell, are held throughout the world demonstrating

clever technological solutions or educational kits relating to science, techonology, en-

gineering, and math. Manifestos such as the ‘Right to Repair’ or the ‘Maker’s Bill

of Rights’ or ‘The Maker Movement Manifesto’ [35] are somewhat reminiscent of the

hacker ethos of the 90s in that they demand technological self-sufficiency and the

37



Figure 2-1: These are MIT architecture students using a 6-axis robot arm to cut
complex surfaces into the foam block on the right. To create the toolpaths, they first
designed the surfaces and Rhino, then used RhinoCAM to create instructions for the
robot arm. The cutting end is an electric hot knife. To regulate the temperature of
the hot knife, the student standing on the left is observing the cutting and flipping the
switch on a surge protector on and off. This is an extremely intelligent controller for
an extremely simple control task. However, despite these students being proficient at
technologies such as CAD, CAM, and robot control, the system integration is tedious
enough that the easiest way for them to get their system running was to incorporate
an imprecise yet very expensive controller–a human.
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related right to open up boxes and look inside. It is common for this movement to be

heralded as a revolution (the third industrial revolution, a manufacturing revolution).

Whether or not there is a revolution ongoing, there is certainly an economic op-

portunity that has formed. Manufacturing ‘maker’ wares as educational toys has

flourished. Crowd-funding sites such as Kickstarter or Crowdsupply have enabled en-

trepreneurs to get funding for their technology products through pre-orders, for some

several millions of dollars. Some maker oriented startups that came from crowd-

funding platforms have enjoyed multi-million dollar exits. Most importantly to the

work we present here, the maker movement has been unfalteringly of the opinion that

(digital) fabrication belongs in the home. Makers are the early adopters of personal

fabrication, and now co-create much of the work in the field of digital fabrication.

Maker engagement has led to the momentum in personal and digital fabrication that

has been critical to this research.

2.7 Free and Open-Source Hardware

The Open-Source Hardware Association provides a definition of what qualifies as

Open-Source Hardware. Unlike Open-Source Software, the definition is slightly more

complex, as copying pieces of hardware involves more work than just ctrl-c, ctrl-v.

You need to reproduce manufacturing processes, source the same parts, and assemble

in the same way.

From http://www.oshwa.org/definition/ [3]: Open Source Hardware (OSHW) is

a term for tangible artifacts—machines, devices, or other physical things— whose

design has been released to the public in such a way that anyone can make, modify,

distribute, and use those things. The definition of OSHW includes documentation of

the work such that it is reproducible, stating the scope of the work, including any
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software that is required to run the work, and stating the the limitations on sharing,

redistributing, and modifying the work.

I believe that free and open-source hardware is imperative for creating more demo-

cratic technologies. Goods and products need to be verifiable, modifiable, and repro-

ducable if we are to trust and use them. For this to be a reality we need standards

for publishing and sharing such as those outlined by the Open Hardware Association.

I argue that sharing free and open-source hardware depends on the infrastructure

of digital fabrication—where codes can describe materials. Physical objects are not

the part that is freely shared, their designs are. Digital fabrication instructions can

describe an object completely. To enable the distributed production of goods, we need

accessible digital fabrication technology. So it is in service of veriable, modifiable,

and reproducible goods that I am working on digital fabrication infrastructure. I

am indebted to the thinking and organisation of the free and open-source hardware

movement.

2.8 Browser-based Computing

While interpreted JavaScript has historically been slow in comparison to compiled

languages such as C, modern implementations of JavaScript use just-in-time compi-

lation techniques to close this gap. V8 for example is the JavaScript execution engine

that was written by Google for Chrome and open-sourced in 2008. V8 was written in

C++ and compiles JavaScript into machine code, giving in-browser JavaScript perfor-

mance that is comparable to compiled C. Firefox has their own JavaScript execution

engine that performs comparability. In developing the work described in Chapter 4,

we rely heavily on this new capacity of JavaScript, and are indebted to the Google

and Firefox engineers who have fixed the bugs we found while running our software.
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2.9 The Machines that Make Project

The MIT Center for Bits and Atoms has cultivated an ad-hoc group of machine

building practioners loosely grouped under the name the Machines that Make project.

The project was originally aimed at sustaining the projects that would come out of the

class MAS.865, How to make something that that makes (almost) anything which has

been taught intermittently since 2004, most recently in 2015 by the author. The class

focusses on machine bulding fundamentals but with a strong inclination towards low-

cost high-precision machines for personal fabrication. Documentation of class projects

is collected at http://mtm.cba.mit.edu. Past students include Manu Prakash, who

has commercialised origami microscope Foldscope [16]; Max Lobovsky, who founded

the desktop 3D printer company Formlabs [66]; Jonathan Ward, whose work led

to the desktop mill Othermill; Ilan Moyer, who founded the handheld smart router

company Shaper [68; 57]; James Coleman, who works in digital fabrication R&D at

Zahner [15]; and many more individuals whose research has inspired and shaped the

work presented here.
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Chapter 3

Networked Controls

If computing had gone from mainframes to laptops, then what was the laptop for

personal fabrication? PopFab is a a pop-up multi-head fabrication tool that fit in a

briefcase Ilan Moyer and I developed in 2012 (see Figure 3-1). We sought to make

a general-purpose digital fabrication platform for different processes, including both

additive and subtractive manufacturing. For mechanical positioning of the different

end effectors, we used a ball/slot kinematic mount [75]. This allowed us to attach the

3D printing head, the knife head, and the milling head precisely each time with only a

single thumbscrew for applying preload. However for the control system our approach

was to use one control brain for all the functions of the machine. This was fine for the

motor control of the XYZ motion, as this was the same for each machine configuration.

We were using a mechanism similar to an H-bot for the XY platform called CoreXY

[55], and a direct drive lead screw based drive train for the Z-axis. But for the different

heads we needed different control electronics—for spindle control, heater control, etc.

To save space and simplify the design, we used the same electrical connection any

high-current head attachments, e.g. an extruder heater would be controlled by the

same connection as a spindle motor. This was simpler when developing the hardware,

but after developing the control board it was difficult to introduce new functionality
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Figure 3-1: The PopFab, a portable pop-up fabrication machine here shown 3D print-
ing and milling a circuit board. It has heads for milling, cutting, and imaging.
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to the machine’s control network. To be able to control PopFab in different machine

modes we wrote many kinds of file format conversion software to be able to work

on top of the hacked together system architecture. Our electrical control system

was inextensible, and our software platform was quite fragile, despite our mechanical

platform being suitable for attaching any alternate end effector.

Is it possible to create distributed control systems for digital fabrication machines?

Specifically, is it possible to use a control network that is extensible to operate digital

fabrication equipment? Instead of having to redesign a control circuit board when we

modify a machine, can we instead add modules to a distributed control network?

In processing plants or manufacturing assembly lines there are so many operations

that need to be managed that central control is not possible. Distributed control

is implemented in large plants (e.g. petrochemical, pharmaceutical, paper, etc.) by

having an operator interface which controls a series of programmable logic controllers

(PLCs) which in turn use a fieldbus to do real-time control of the motors, sensors,

etc. that are being used [50]. Timing critical elements are managed by fieldbusses,

whereas less critical elements are connected through e.g. ethernet. PLC programming

requires knowledge of the particular subsystems that are being used and their respec-

tive control languages. These could be of many types, including CAN bus, Foundation

Fieldbus, Profibus, Modbus, EtherCAT, etc. (8 types are described in IEC’s 61158),

all of which promise interoperability, interchangability, and interconnectivity. The

standards deliver on that promise to varying degrees with various bandwidth and

power limitations, which is an indication for why there are so many standards. For

large-scale plant processing, the amount of time it takes to design, implement, and

calibrate all these systems is a fraction of the running cost, making the up-front in-

vestment in communication infrastructure worthwhile. For low-volume manufacturing

or other types of small-scale automation, implementing distributed control through

these technologies quickly becomes a large fraction of the running cost. Therefore,
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thusfar distributed control has been employed only at large scale and high cost. To

be able to make distributed controls available at a very small scale and low cost, we

(like many others before us) have implented several standards of our own for machine

communication.

3.1 APA: Asynchronous Packet Automata

Historically deterministic protocols have been preferred for real-time network com-

munication applications. The timescales at which network nodes could process and

pass along packets was historically comparable to the timescales in which a machine

operation could take place. Then missing a packet would mean missing an entire in-

struction cycle. However, now the timescale at which data processing and networking

takes place is several orders of magnitude off from machine instruction requirements

(e.g. regular 1000BASE-T ethernet runs at 1 Gbit/s, compared to RS-232’s 115200

kbit/s), and the benefits of a distributed asynchronous network for machine control

become attainable.

Figure 3-2: An APA network for tiled heaters. Image from Method and Apparatus
for Online Calorimetry [25].
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Composite airplanes such as the Airbus A380 or the Boeing 787 are ramping up in

production. To make large composite parts, the aerospace industry has to make even

larger autoclaves. The autoclave size increases linearly, its cost increases exponen-

tially. Working with the airplane fuselage and wing manufacturing company Spirit

Aerosystems, we came up with the idea to replace autoclaves with smart moulds that

would use networked heating tiles to cure the epoxy (see Figure 3-2 [25].

If we make the tiles 10 cm long and use them on a wing that is about 30m long, we

can expect to use at least 1000 tiles for a single smart mould. Most fieldbus standards

support up to a few hundred nodes, and would require us to set addresses for each

node [50]. To avoid needing to specify addresses or determine routing beforehand we

used both network coordinates, meaning that the location of the APA nodes was the

same as their address, and source routing, meaning that packets specify the route the

packet takes through the APA network.

The form of an APA packet is {121^|payload}. The {} is the packet framing. The

121 is the address to the node where each number is a port to exit on along the route.

The ^ is where in the route we are, such that 12^1 is midroute and ^121 has arrived

at its destination. The address can be arbitrarily long, and several addresses might

address the same node. The | delimits the routing from the payload. The payload

could be of arbitrary length, and if it contains special characters they are escaped

with \.

The hardware handshaking for transmitting an APA packet involves raising a line

to indicate there is a packet to send. The recipient node acknowledges by raising

the second line. If the recipient node does not acknowledge, the packet does not

transmit. This backpressure flow control makes sure that no packets are lost due to

bottlenecks in the network. The timing of the data transmissioon can set to be the

same for all nodes, or the handshaking can be used to determine the data rate. There

is no central clock for the network communication; it is asynchronous. Node to node
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communication can execute at any time.

The topology of a network can be discovered by having nodes send out flood packets.

Because the naming is the same as the routing, longer addresses will mean routes

with more hops. This provides a good heuristic for selecting the shortest route for

the packets. However, if there are triangle inequality violations, these will still form

an issue for APA.

The original implementation for APA was designed to work at thermal timescales.

Even if a packet roundtrip was more than a tenth of a second, it would still be much

faster than the thermal response of the epoxy/fibre system. But the benefits of the

APA communication protocol were applicable also to other systems, including digital

fabrication machines. The first networked control system I tried for a small mill was

made with repurposed APA nodes outfitted with motor controller daughter boards.

However, the timescales of even a small mill were higher than the speed at which we

ran APA. Reimplementing APA with faster processors would have likely dealt with

some but not all of the issues. Therefore we created several interim solutions for

distributed control using busses instead.

3.2 Simple Machine Bus

Unlike asynchronous communication busses communicate with all nodes on the net-

work at once. If there are any delays in the bus network, it is due to the physical layer

(although wires would have to be very long for this to be a factor in our setup). The

simplest bus protocol we implemented used a shared software serial bus implemented

on an 8-bit AVR microcontroller (the ATTINY44) for receiving packets. We used

this bus for controlling the MTM Snap milling machine that is depicted in Figure 1-3.

The receive and transmit lines (rx/tx) were bussed through using RJ9 connectors (see

Figure 3-3). Each bus node connected to its own daughterboard for stepper motor
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Figure 3-3: A simple 2-wire bus network, here shown with a stepper motor daughter
board.

control, which in turn was connected to the MTM Snap’s stepper motors. Packets

were sent on the line in the form of

x hi lo Y hi lo Z hi lo T hi lo G

where x,X, y, Y, z, or Z are IDs for the bus nodes. Each node is programmed with its

ID, where for example x denotes a move in the positive direction along the x-axis, and

X denotes a move in the negative direction. Likewise for the other axis identifiers,

which might be y, Y, z, Z, a, A, b, B etc. After each identifier, a high and low character

are sent, which add up to the number of of steps to be taken. The T identifier is

special, as it denotes the number of milliseconds during with that number of steps

should be executed. Because each move needs to execute for all axes in the same

amount of time, the T value is the same for all nodes connected to the bus. The g

character is not an identifier, but a go command. When it is processed by the nodes

on the network, they all execute the previous command that has been addressed to

48



them. In the case of a packet x 00 01 Y 00 FF Z 00 00 T 01 FF G, the move will be

x + 1 step, y − 255 steps, and z 0 steps in 511 ms. The nodes would all first receive

both their number of steps as well as the time they had to execute those steps. These

values would already be saved by the time the nodes received the g go command.

Figure 3-4: The simple bus network controlling a 5-axis timing-belt driven version of
the MTM Snap, made by James Coleman.

This bus implementation was fast to set up, low cost, and could be extended on

the fly, all attributes we were aiming for. Furthermore, the control boards could be

milled by the milling machine they were used to control, which was a nice recursion.

However, this implementation was also plagued by low bandwidth, rounding errors, in

practice one-way communication, and a large number of boards for a relatively simple

application (e.g. 3 stepper motors and a spindle motor would use 4 bus boards, 4

daughter boards, and a bridge board to run).

3.3 Fabnet

Although we wanted an asynchronous implementation of a distributed network, we

also needed control systems for the machines we were developing. The 5-axis machine

shown in Figure 3-4 could execute simple moves, but was hardly a robust platform for
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Figure 3-5: A gestalt node, including an ATMEGA328 microcontroller, an RS-485
differential bus transceiver, a stepper motor driver for up to 2A of current, and button
for identifying the nodes on the network. Thanks to FactoryForAll, this particular
board version features all pink LEDs. The schematics are available in Appendix A,
or in [62].
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5-axis precision milling. The same time we were hitting the limitations of the simple

bus network, Ilan Moyer was developing a control library for automated tools called

pyGestalt [56]. His library specified the use of a communication network he called

Fabnet, which extends the RS-485 standard for multipoint networks with sync, error,

and stop lines [56]. To be able to take advantage of the library, Ilan and I developed

a fabnet compatible node for stepper motors which is depicted in Figure 3-5, as well

as several other end-effector specific nodes such as the extruder node shown in 3-6.

Figure 3-6: A network of gestalt nodes. Here are 3 stepper motor gestalt nodes, and
one extruder node with temperature sensing, extrusion motor control, and heater
wire.

The gestalt node receives commands, can send back statuses or data, and can con-

troller stepper motors. Unlike APA it has synchronisation between nodes. It runs

firmware that is complementary to the pyGestalt library. This firmware implements

a soft synchronisation, where nodes are set up with initialising packets and a synchro-

nisation is sent multicast to all nodes. This is similar to the simple bus network, but

more robust because it is using a multipoint protocol. Note that any kind of node can
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be connected to the fabnet network, not just stepper motor controllers. I have also

developed gestalt nodes for sensors such as temperature, and other actuators such as

DC motors or heater wire.

The gestalt nodes can theoretically be connected with any network topology, but

practically the stepper gestalt nodes have been designed with only two fabnet con-

nectors. Practically, this means the network topology is that of a bus. An example

configuration of gestalt nodes can be seen in Figure 3-6 using a 3-axis 3D printer as

an example machine. There are 3 stepper motor gestalt nodes, and 1 gestalt node

designed for a fused deposition modelling extruder head.

The extensiblilty of the gestalt network makes it much more flexible than conventional

control boards. It becomes trivial to add fourth or fifth axes to a digital fabrication

machine, something which in conventional systems requires a substantial retrofit of

controls.

In the next chapter on software and virtual machines, I will go into more detail about

how to control a network of nodes.
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Chapter 4

Software Control and Virtual

Machines

There are many different types of software and file formats used in a digital fabrica-

tion pipeline. In a typical workflow, first a designer’s intent is codified in a digital

model. Then the model is translated into machine toolpaths. Finally the toolpaths

are translated into motor commands by the “computer” of Computer Numerical Con-

trol. While CNC might sound like there is one computer involved in this workflow, it’s

typically a minimum of four, including the computer that provides the user interface

to the CNC machines and the computer which issues commands to the motors.

Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM) have been

applications of computers since well before computers had interactive displays. CAD

work done on minicomputers was output with pen plotters in batch mode. Bezier

surfaces were developed at Renault well before they could be displayed on a refresh-

ing screen [65]. The work that Ivan Sutherland did on interactive CAD in 1963 in

his dissertation Sketchpad: a Man-Machine Graphical Communication System1 was

1Man-Machine or Man-Computer has unfortunately been the term of choice for many early
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well before its time in commercial applicability. An interactive display at the time

had an estimated cost of well over 100k USD, which would be about 800k USD in

2016. Interactive CAD gained much more traction after the first personal computers

started appearing and progress was made on shape modelling with the invention of

boundary representations and b-splines [67].

Figure 4-1: A current user interface for a 5-axis CNC milling machine.

CAM packages also became commercially viable in the 1980s with groups like Master-

cam or Delcam commercialising academic efforts, and groups like Dassault Systems

spinning out of industry spaces. Mastercam remains the largest CAM software com-

pany currently operating.

The computer interface to a digital fabrication machine receives the least attention

in research, development, or user experience design. See Figure 4-1 for a typical

example. These interfaces are commonly developed by the companies who sell the

digital fabrication machines, whose core competency is hardly software usability. Due

to these kinds of interfaces and methods of interacting with machines, the current job

of a machinist is much more closely aligned with that of a computer engineer than

researchers in human-machine systems: I. Sutherland’s Man-Machine Graphical Communication
System [81]; J.C.R. Licklider’s Man-computer symbiosis [45]; J. Martin’s Design of man-computer
dialogues [52]; N. Hogan’s Controlling impedance at the man/machine interface [37] etc. After
L. Suchman published the widely influential Plans and situated actions: The problem of human-
machine communication [78] in 1987, the term human-machine started gaining traction, although
many works are still published that exclude half of humanity in their terminology.
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that of a traditional machinist.

This history of software and digital fabrication has led us to the software packages

we translate between today (see Figure 4-2). However, the historical limitations

that shaped the architecture of these systems do not still apply. In comparison to

mechanical systems or electronics, software is easy to modify and rewrite. However,

this rarely happens in a digital fabrication setting. The issues with interchangability,

interoperability, and interconnectivity we saw in Chapter 3 on control networks are

also in play here. Specific software workflows are not typically robust and break with

small changes. Therefore users often work around the workflow’s restrictions instead

of modifying them.

Figure 4-2: The historical separation of roles into computer, drafter, toolpath plan-
ner, machine interface, and machine control no longer apply. Although we have
dataflow programming languages to describe each of these steps in the digital fabri-
cation pipeline, their interfaces remain poorly connected.

How can we restructure the digital fabrication software pipeline for better control?

How can we expose functionality to the end-user without requiring domain expertise?

What are the modes of control we require?
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4.1 Virtual machines

Using distributed networked controls such as described in Chapter 3 implicitly in-

troduces three layers of separation in machine control. The first is the network of

nodes that makes up the machine’s control system. The last is the application layer

that communicates with the machine. An intermediate layer is the description of

how the distinct nodes form a machine instantiation. We call this layer the Virtual

Machine. The Virtual Machine can help translate application-specific commands,

such as “move to these coordinates”, into commands specific to the network, such as

“A-node needs to move its motor this much B-node needs to move its motors this

much.” If we consider how machine control layers correspond to the Open Systems

Interconnect model, the virtual machine corresponds most closely to the transport

layer (see Table 4.1). The virtual machine handles transmission and handshaking

details, but also determines which node needs to receive what command.

OSI Layer Machine Layer
7. Application e.g. jog interface
6. Presentation
5. Session
4. Transport Virtual Machine
3. Network e.g. APA
2. Data link
1. Physical e.g. physical node

Table 4.1: Comparing the layers of machine implementaion to the OSI model for
communication

The application layer might produce a series of coordinates for the machine to move

to, such as is the case with g-code. With g-code the interpretation of which motor

needs to move all happens on the g-code intepreter control board. However, if we

have control networks, which motor needs to move needs to be described a layer above

the network. This is the task of a virtual machine. The transport layer figures out
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which node is addressed and when.

For example, if we have an XY stage that moves with two separate drive trains, the

virtual machine will assign X motion packets to the X node and Y motion packets to

the Y node. If we have an XY stage that moves with some form of parallel kinematics

(where both motors are used in both X and Y positioning), then the appropriate

components of the moves will be calculated by the virtual machine and assigned to

the A node and B node. Conveniently this means that if we create an application,

such as a program that generates coordinates to send to a machine, we can still

apply that to several different machines as long as we swap out the virtual machine

controller. This layering encourages better reusablility in application development.

The PyGestalt library provides a structure for describing virtual machines and their

network interfaces in Python [56]. In the code below, I set up the parallel kinematics

of an H-bot configuration together with a direct drive Z-axis.

def initKinematics(self):

# drive components of h-bot.

# Inputs are A/B stepper motors,

# outputs are X/Y in machine coordinates.

self.aMotor = elements.elementChain.forward(

[elements.microstep.forward(4),

elements.stepper.forward(1.8),

elements.pulley.forward(2.03),

elements.invert.forward(False)])

self.bMotor = elements.elementChain.forward(

[elements.microstep.forward(4),

elements.stepper.forward(1.8),

elements.pulley.forward(2.03),

elements.invert.forward(False)])

self.zAxis = elements.elementChain.forward(

[elements.microstep.forward(4),

elements.stepper.forward(1.8),

elements.leadscrew.forward(8),
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elements.invert.forward(True)])

xyKinematics = kinematics.hbot()

zKinematics = kinematics.direct(1)

compoundKinematics = kinematics.compound(

[xyKinematics, zKinematics])

self.stageKinematics = compoundKinematics

In the kinematics definition of this virtual machine, I describe which node is connected

to what hardware (in this setup, two pulleys and one leadscrew with 8mm of travel per

rotation). Other definitions will determine the controller interface to the computer

(a serial connection), and to the respective nodes (through a fabnet instantiation).

The virtual machine I defined can now be imported into other software programs and

moves. Say my VM is called virtualMachine. An example program below would

move the machine along the vertices of a 1.5cm cube:

import virtualMachine

if __name__ == ’__main__’:

# The persistence file retains which node has been

# assigned which ID

myMachine = virtualMachine(persistenceFile = "mm.vmp")

# This is for how fast we will move in mm/s

myMachine.abzNode.setVelocityRequest(6)

# Some random moves to test with

moves = [[15,0,0],[15,15,0],[15,15,15],

[0,15,15],[0,0,15],[0,0,0]]

# Move!

for move in moves:

myMachine.move(move)

Making the list of moves can happen in the same way that g-code is currently produced

from a digital design. However, it is just as easy to generate moves that respond to
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information in real time, such as sensor data collected from the machine, or user

feedback generated during runtime. Generating g-code and then running it is exactly

how we have been running CNC mills for the past 60 years. However, this method of

work was established well before we had access to the computational resources and

sensor inputs we have now. Programming virtual machines to be able to respond to

actions other than ‘move’, ‘spindle on’ is something that is now well within the scope

of this work.

4.2 Application interfaces

In 4.1, the example we give for a simple application is a jog interface for a machine.

A user presses arrow keys, and the machine moves accordingly. This is perhaps the

simplest application we can conceive. How can we make it easier to generate machine

control applications? How can we allow the user to incorporate things like sensor

data or other feedback?

4.2.1 Mods

Mods is a dataflow programming environment where modules can be connected into

a program. Mods is written in JavaScript and uses the Node.js runtime environment

for machine interfacing. Much of the mods development has been done by my thesis

advisor, Neil Gershenfeld. Each module performs a function and can output it to

another module. For example, a single module might threshold an image. Each

module contains its own appearance code as well as the code for the function it

executes. If that function is compute-intensive, the module will spawn a worker to
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Figure 4-3: Two modules in the mods environment. The first reads in .png images.
The second takes an image and applies a threshold function to it.

perform the computation without crashing the webpage. For example, this is the

worker that performs image thresholds:

function worker() {

self.addEventListener(’message’,function(evt) {

var h = evt.data.height

var w = evt.data.width

var t = evt.data.threshold

var buf = new Uint8ClampedArray(evt.data.buffer)

// for each colour channel

var r,g,b,a,i

for (var row = 0; row < h; ++row) {

for (var col = 0; col < w; ++col) {

r = buf[(h-1-row)*w*4+col*4+0]

g = buf[(h-1-row)*w*4+col*4+1]

b = buf[(h-1-row)*w*4+col*4+2]

a = buf[(h-1-row)*w*4+col*4+3]

i = (r+g+b)/(3*255)

if (a == 0)
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val = 255

else if (i > t)

var val = 255

else

var val = 0

buf[(h-1-row)*w*4+col*4+0] = val

buf[(h-1-row)*w*4+col*4+1] = val

buf[(h-1-row)*w*4+col*4+2] = val

buf[(h-1-row)*w*4+col*4+3] = 255

}

}

self.postMessage({buffer:buf.buffer},[buf.buffer])

})

}

That worker is called by the threshold module, which is depicted in Figure 4-7. To

be able to vectorize an image so that its edges can be used as toolpaths, we can

connect a series of modules together. Based on the binary image generated by the

threshold function, we can calculate the distance map (which labels each pixel with

the distance to the nearest boundary pixel). Using the distance map, we can easily

offset the image to account for the diameter of the tool we are working with. Distance

map and Offset are both existing modules in the mods environment.

Figure 4-4: Mods edge detection of a binary image, edge orientation of vertices, and
vectorization and vector sorting for toolpath generation.
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After generating a binary image, we can detect the edges of our now-offset image. This

is done with the Edge detect module, depicted on the left in Figure 4-4. The edges

can then be sorted for direction (north south, east west), before they are vectorized

by the Vectorize module (all shown in Figure 4-4).

Figure 4-5: A closeup view of the mods vectorize output on a different image.

In the mods environment, besides connecting groups of modules into program, users

can also edit modules themselves. They can also write new modules and add them

to their mods programs. The modules are then executed immediately; they do not

need to be uploaded to a server. The functions of the modules all execute in-browser.

For example, the calculations that need to be done for distance transforms execute

within the browser environment. Any of the mods programs can run offline. For

convenience, the mods environment is served from http://mods.cba.mit.edu and

includes many of the modules we have built.

To be able to talk to a machine, the mods enviroment does need to talk to a server

that has access to that machine. To do this, we use Node.js and WebSockets to run a

local server that listens for commands from mods. The code for running such a server
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Figure 4-6: Mods communicating with a physical machine through a websocket.

is as follows:

// fabnetserver.js

var server_port = ’1234’

var client_address = ’127.0.0.1’

console.log("listening for connections from

"+client_address+" on "+server_port)

var server = {}

var WebSocketServer = require(’ws’).Server

wss = new WebSocketServer({port:server_port})

function worker(ws,arg) {

var child_process = require(’child_process’)

console.log("python fabnet_plotter.py ’"+arg+"’")

child_process.exec("python fabnet_plotter.py ’"+arg+

"’",function(err,stdout,stderr) {

ws.send(stdout)

})
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}

server.worker = worker;

wss.on(’connection’,function(ws) {

if (ws._socket.remoteAddress != client_address) {

console.log("error: client address doesn’t match")

return}

ws.on(’message’,function(msg) {

server.worker(ws,msg);

})

})

This particular server receives a list of coordinates as a string from a client module in

mods, and uses that list as an argument to pass to a Python program with a PyGestalt

Virtual Machine. It listens to 127.0.0.1:1234, which is localhost. It is possible to run

the fabserver on a different computer than the computer that is connected to the

machine. However this code is not very secure and could easily be reprogrammed to

run exploit code. Other servers use the JavaScript serial library to talk directly to

fabnet, however we do not have a kinematics library such as PyGestalt implemented

in JavaScript yet.

Figure 4-7: Mods image capture from a webcam to a cutting toolpath.
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Figure 4-8: Toolpath planning for a four degree of freedom hot wire cutter. The rails
are specified on the surface of the material, such that their projections onto the plane
of the end effector become the toolpath. The toolpath is calculated in Rhino with
Grasshopper and exported as a csv file to be imported in to a virtual machine.
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4.2.2 Interfacing with existing CAD/CAM software

There are many existing applications for generating machine actions–e.g. many dif-

ferent CAD/CAM packages. It would be remiss to assume that these cannot also be

used in conjunction with networked controls. The virtual machines that we defined

in the previous section can be called with commands from any application.

For example, a 4-axis hot wire cutter can cut foam pieces into complex ruled surfaces.

To generate the toolpaths for these kinds of parts, the desired curve to be cut needs

to be specified, as well as where in the material that curve is to be cut. If we make

the assumption that the specified curve should lay on the surface of the material

provided, we can extract the machine wire connection position required to make

those cuts from the projection of the desired curve on the material plane onto the

machine’s wire connection plane.

These geometric operations (curve sampling, projections) are well-established meth-

ods in CAD software. Re-implementing these kind of methods in e.g. mods does not

improve the output of our machine. Therefore, to make toolpaths for a hot wire

cutter running on a PyGestalt network, we used the application Rhino and its data

flow scripting language Grasshopper. We exported the toolpaths as comma separated

value files and used them with a python script that imported the hot wire cutting

virtual machine. These details are shown in Figure 4-8.

Much of the work that goes into digital fabrication is in the form of translating

between applications through specific kinds of imports, file formats, or modification

scripts. To be an expert at dealing with these kinds of issues one not only needs to

understand in depth how to run a machine tool, but also how deal with software and
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computers. These are often invisible skills, an experience-learned knowledge. This

section detailed how we interfaced with Rhino, which is rather extensible and flexible

as far as software tools go. However, in the future, our hope is that this elusive

and often invisible labour of connecting software tools is routinised and eventually

automated. By layering the components of the software stack more explicitly, it

becomes easier to modify each piece independently.

4.3 Spawning control

How different nodes are connected is not only an attribute that is set by the software

designer, but in many cases also a result of how the machine is wired and connected.

It is conceivable to extract much of the information needed to describe a virtual

machine from the node network interconnect on the physical machine. This way, a

connected machine can self-report its configuration to applications. Since the machine

description is contained in a virtual machine, once the application receives a virtual

machine it can immediately use it to execute actions.

A community contributor has developed a graphical user interface for auto-generation

of Python virtual machines; it walks the machine developer through a set of questions

about the machine and how it is connected to be able to do this. More details are

covered in Chapter 7. That is one of the first steps in the direction of spawned

controls, but more work on this remains to be completed.
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Chapter 5

Modular Machines

Digital fabrication machines are often characterised by how many degrees of freedom

they have. A 3-axis mill is less complex than a 5-axis mill but cannot produce parts

with undercuts or overhangs. Why can we not extend the capabilities of mechanical

machines? Networked distributed controls make it possible to extend the electronics

of a machine tool with new capabilities on the fly. Why are similar extension interfaces

not built into the mechanics of machine tools?

The wire EDM in our lab has four degrees of freedom, meaning that the wire feeder

on the top can be controlled in X and Y and the wire receptacle on the bottom can

independently be moved in X and Y. This enables us to make shapes such as a square

cut on the bottom of a piece of metal stock with a circle cut into the top. With

more degrees of freedom, a machine tool is able to make objects with more complex

geometries.

To add capability to our wire EDM, two researchers from the Center for Bits and

Atoms, Will Langford and Sam Calisch, decided to try to add a parasitic 5th degree
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Figure 5-1: Using two types of modular mechanical components for machines, we can
quickly assemble many different instantiations of machines. These are all machine
instantiations that have been tested over the course of this project. Although you
can quickly build up an XY stage with independent linear modules such as is done in
the DRAW machine above, it can be beneficial to use parallel kinematics instead. We
have therefore also often used a CoreXY stage as a machine module that provides
XY motion with much less moving mass [55].
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of freedom to the wire EDM. This would allow them to cut helical shapes (useful for

making couplings for example). Making the rotary degree of freedom was easy—they

built a rotating chuck that could hold a piece of cylindrical stock. But when it came

time to tie it into the rest of the machine’s control system, they were presented with

difficulties. Simply put, wire EDMs do not move at a fixed speed, but change their

velocity based on the resistance they encounter in the sheet stock. To be able to

move at the same speed as the rest of the control system, the control system needs

to report out where it is at that point. Will and Sam ultimately used a webcam with

optical character recognition focused on the numerical readout on the screen of the

machine’s position to be able to move the 5th axis in time with the rest of the system.

This was not a particularly robust or easy solution and ended up not getting used

beyond the initial cut tests, although they were quite successful.

If the control system could be made extensible by introducting distributed networked

control, as described in Chapter 3, then extending machines mechanically such as

Will and Sam tried to do will become a much more common effort. Let’s assume that

interconnectivity for networked controls will happen. How can we make it easy to

extend machines mechanically? How can we build up a machine tool out of individual

degrees of freedom?

To start, what if we decomposed all machine tools into linear or rotary degrees of

freedom, and built up machines with those building blocks? Using linear motion

and rotary motion we can reproduce almost all machine tool motion requirements

(see Figure 5-2). We can move both the material that is being worked on as well as

the end effector doing the work. By using resuable building blocks we could rapidly

assemble many different instantiations of machines. This would enable quick testing

of different machine configurations.
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Figure 5-2: Configurations of linear and rotary modular machine parts that can make
up machine instantiations. Two linear stages might make up an XY stage, or an XZ
stage. Adding a rotary stage can introduce a polar coordinate system. Any assembly
of machine parts can form a particular machine instantiation, be it with 1, 2, 3,...n
degrees of freedom.
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There are clear mechanical drawbacks to using modular stages that couple and decou-

ple as machine tools. Such an assembly of parts will never be as stiff as a custom-built

monolithic machine. Stiffness is required in machine tools to withstand cutting force

with minimal deflection and vibration at the tool tip. Connections between parts

might be particularly susceptible to vibration or introduce backlash. Using single-

degree-of freedom modules implies the use of serial kinematics, meaning that stages

are stacked on top of each other. This means that the X axis needs to carry the weight

of the Y axis on top of whatever machining forces the machine might encounter. This

has implications for the rate at which the machine can accelerate and also how slop

in the system might compound.

These kinds of concerns are all valid. Precision and accuracy of a machine tool are

important evaluation criteria. Parallel kinematics are often a more appropriate choice

for high-speed motion requirements. However, we are concerned with a domain of

machine building that is barely populated by any machines at all. How can we

have the precision and complexity that automation affords in more domains than the

digital fabrication tools (milling machines, laser cutters, 3D printers) we know now?

What are ways in which we can encourage rapid prototyping of rapid prototyping

machines? Some criteria to evaluate with include:

• Quick start: How long does it take to go from nothing to the first testable

prototype?

• Accessibility: Can inexpensive and/or reusable parts be used? Is machine design

domain expertise required?

• Diversity: How easy is it to incorporate different end effectors, sensors, or ac-

tuators? Can a wide range of processes be automated?
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• Modification: Can the system easily be iterated upon? Do new iterations require

a new machine to be built from the ground up?

These criteria—ease of start, accessibility, diversity, and ease of modification—make

up a set of requirements for a machine building infrastructure that enables rapid pro-

totyping of rapid prototyping machines. Ideally machine modules could incorporate

the interoperability, interchangablility, and interconnectivity of distributed control

networks. Legacy machines could be modules within an encompassing system (such

as the wire EDM together with its parasitic 5th axis).

The drawbacks of perfectly stiff, low vibration, high accuracy machines lie not in the

tools themselves, but in how applicable they are to the problem at hand. The need

for machines that can mill aluminium is well met by the digital fabrication machine

marketplace. Milling machines are very applicable to that problem. But what about

a machine that needs to remove a petridish from a heating plate when its contents

turn from blue to pink? Or a machine that needs to place stickers at the top right

corner of a particular kind of package? Or a machine that makes helical cuts in soft

materials? Or a machine to decorate cakes? These kinds of processes have not had

access to the precision of CNC control. The cost of automation for these applications

is traditionally far too high to justify.1 Therefore, we are aiming not to replace well-

established CNC tools such as mills for metal with modular parts, but to broaden the

scope of machine tools to include anyone who is in need of repeatability and precision

in their applications.

By making machines out of modular parts, we introduce more versatility through

1Many of these applications would be improved with the precision of automation, but the accuracy
that is achievable by hand is often considered acceptable given the large cost increase of automation.
One particularly salient example is that of the myriad biology lab workers who need to return to
the bench at irregular hours to check on experiments or perform simple modifications.
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reconfiguration, more robustness by making broken parts easy to swap out, and lower

cost by reducing the design cost of each individual machine.

A similar argument was made during the introduction of packet switching networks,

which served as the foundation of later protocols like TCP/IP. Some people argued

that packet switching was a less optimal way to transmit data than dedicating en-

tire connections between nodes to individual communications, as in the telephone

networks of the time [69]. Later, TCP/IP was developed to create an “effective tech-

nique for multiplexed utilization of existing interconnected networks” [14]. TCP/IP,

built on top of packet switching networks, enabled distributed heterogenous network-

ing at enormous scale. A fundamental technology change gave rise to the proliferation

of many different networks across the globe. Can we introduce a similar change in

machine design?

We have developed several iterations of motion stage designs for modular machine

building.2 Here we will evaluate some of the versions developed for their versatility,

robustness, stiffness, and cost.

5.1 Linear Modules

The first version of the stages had 20” of linear travel. They were made with 1/16th

inch water jet cut and folded aluminium 6061 sheet stock (using a box brake) with

milled HDPE parts. The motors were NEMA 17 stepper motors with 4-start teflon

coated lead screws with a pitch of 0.05 inch. The guide shafts were 3/8” hardened steel

2The first iteration of the modular reconfigurable stages was built as a rapid prototyping exercise
carried out in collaboration with researchers at MISiS University in Moscow during the Fab Lab 1.5
workshop held in October 2013.
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Figure 5-3: Two linear and one rotary stage, made of 1/16th aluminium and 1/2 inch
HDPE.
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with nylon bearings. The stages have a hole pattern on the sides, bottom, and motion

platform so they can be coupled to other stages in several standard configurations.

These include with the second stage’s back in the middle, or the second stage vertical

on either side of the second stage (see e.g. Figure 5-3). Coupling pieces (for spacing)

for attaching the stages to each other were made with HDPE as well. To maximise

the holding surface area, we made custom fasteners, including rectangular nuts for

stronger t-slot construction.

The stages were quick to couple and decouple and moved well. We connected each

stage to a PyGestalt node as described in the previous chapter. However, we en-

countered issues with the stiffness of the folded aluminium. In several configurations,

especially with a stage cantilevered off of another, there was play in the system that

resulted in loss of accuracy.

To mitigate this issue, we built a second version of the stages with a wider motion

platform and thicker sheet metal. We used a hydraulic brake on water jet cut 1/8”

3031 aluminium. We used the same motors, guide shafts, and fasteners. The moving

platforms and ends of the stages were again made of milled HDPE. We updated the

hole pattern so we could use three points of contact in any configuration of coupling.

The resulting stages were very stiff and their couplings were more robust, but at the

cost of extra weight. Instead of cantilevering stages, we also made idler wheels for

supporting the cantilevered edges. We also made assemblies with redundant stages,

e.g. two stages for X motion supporting a Y stage as a bridge.

To keep weight down but improve the stiffness, we built a series of stages with 60cm

of travel out of a composite material of laminated polycarbonate and aluminium. We

used NEMA 17 stepper motors with integrated 4-start 2mm pitch lead screws and
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Figure 5-4: Two versions of linear stages, one with 1/16th” aluminium (left, XZ
assembly), and another with 1/8th” (middle two). On the right, two rotary stages
made with 1/6th aluminium and 1/2” milled HDPE.
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3/8” hardened steel guide shafts and nylon bushings. To fold these stages, we scored

the material using a v-groove end-mill, creating a crease that could be folded without

the mechanical advantage of a brake. These stages were entirely cut on a CNC

mill without a water jet cutter. However, the size and vacuum bed level tolerance

we needed meant that we used a mill that was about as expensive as a water jet.

However, this did remove the requirement of a hydraulic press brake.

5.2 Rotary Modules

Linear stages were the first modular mechanical parts we developed. However, it was

immediately apparent that we would need rotary modules as well. (Robotic) arms

rarely use any linearly translating elements at all; they more commonly use a stack of

rotating elements. Stacking rotary elements does mean that you might end up with

a precariously cantilevered end effector. Calculating the motion trajectories for end

effectors is also more complex, as there is typically more than one way an end effector

can be placed in the same position (imagine the ‘elbow’ could be bent to the left or

to the right to keep the ‘hand’ in the same position). The range and geometry of

moves that you can execute is therefore also very rich.

To make a rotary stage, we used MXL timing belts connected to a NEMA 17 stepper

motor with a drive pulley to rotate an aluminium platform. We used a 3D printed

MXL pulley to attach to the platform. For the stage body we used the same 1/8” 6061

aluminium and milled HDPE 3. We used steel taper bearings as a contact surface.

3The HDPE we use is the brand Starboard. We have found that it is significantly stiffer than
other types of HDPE we have used, and is consistent and reliable in its tolerances and material
properties.
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The rotary module platforms are tapped to accommodate the attachment of other

stages or end effectors. They are shown in Figure 5-3 and Figure 5-4.

5.3 End Effectors

Figure 5-5: A syringe pump end effector made out of aluminium next to a spring-
loaded pen holder made with cardboard. Both use the same motors, one for pressing
the syringe plunger, the other for pen up and pen down.

The end effector is the part of the machine that will be interacting with the material

that is being machined. Common end effectors include lasers for laser cutters and

stereolithography 3D printers, fused deposition extruders for 3D printers, spindles for

mills, knives for cutters, syringes and pumps for liquid handlers, et cetera. Each of

these end effectors has cutting forces associated with its use (e.g. high for milling

steel, low for moving a lens around to focus a laser) as well as weight, power, and

data requirements.
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We have developed several end effectors for using with machine the modules (see

Figure 5-5), including nichrome wire with flexible attachment, syringes, extruders,

spindles, and (oscillating) knives. To mount these end effectors on our machines,

they include the same hole mounting patterns as the stages. Their controls can be

connected to the fabnet network that the motion stages use. Diversity of machines

comes in part from diversity of end effectors, so their standardisation is limited to how

the end effectors connect mechanically to the motion modules and electronically to

their control networks. More detail on what kinds of end effectors we have encountered

will be given in Chapter 7.

5.4 Rapid Prototyping of Rapid Prototyping Ma-

chines

The modules shown here, along with the distributed controls described in Chapter 3

and the software described in Chapter 4, make it easy to quickly assemble automatic

processes. I have configured modules into many different assemblies, each its own

machine.

Figures 5-6 and 5-7 show two different hot wire cutters, one with four degrees of

freedom and another with a thirty-six inch cutting span. The latter machine was

quickly assembled one afternoon when a fellow student realised he needed an airfoil

with a reference geometry to test in the wind tunnel during his allotted time slot,

which happened to be later that day. We made the machine, made the part, and got

the data. The reference geometry airfoil is shown on the left, and the experimental

wing shown on the right in Figure 5-7.
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Figure 5-6: This is a 4-axis hot wire cutter named Slashbot that uses 4 linear stages
and nichrome wire mounted on springs to cut foam. The machine’s control network
runs on PyGestalt, and we used Rhino/Grasshopper as a CAD/CAM package for
generating actions.
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Figure 5-7: A hot-wire cutter with a thirty-six inch span. This hot wire cutter used
a later iteration of the mechanical stages connected with aluminium cross bars. This
means that it only had two degrees of freedom; we did this so that we could apply
much more tension on the nichrome wire so that it would cut parts with a thirty-six
inch span without the drag in the middle causing geometric imperfection.
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Figure 5-8: This is a machine that uses a rotary stage, a high-resolution camera,
PyGestalt stepper nodes, and the mods workflow scripting environment to automate
image capture. This imports a gphoto2 module as well as a PyGestalt VM into mods.
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One of our collaborators was interested in meticulously recording the colour infor-

mation of glossy objects. Unfortunately, specular reflections make it hard to get the

colour of an object. Figure 5-8 shows the setup we created with a rotary module

and a mods workflow for automating image capture using the camera control library

gphoto2.

These are only a few examples of the machines we were able to rapidly configure using

the infrastructure presented thus far. We will go into more detail on machines others

have created with these tools in Chapter 7.

5.5 Tool-users versus tool-makers

Breaking machines into modules that can be assembled might seem like a semantic

distinction from current common practice in machine design and production. How-

ever, I argue that it is a strong redistribution of power into the hands of the tool-user.

If the wire EDM that Will and Sam attempted to modify was built out of modular

machine parts, it would have been trivial for them to add a fifth degree of freedom

and thereby expand the number of parts they could build. The company that makes

the wire EDM has a model of the machine that includes an additional rotary degree

of freedom, but that machine is almost twice the cost. Furthermore, and perhaps

more tellingly, it is export controlled by international arms traffic regulations. A 5-

axis wire EDM is considered a type of weapon, and access to that level of fabrication

capability is worth of government control.

It is currently difficult to build complex machines such as a 5-axis wire EDM. Per-

haps someone will make an argument that access to precision fabrication should be
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limited to those we can trust to not build weapons. Some such arguments were made

after the first working guns were made on a 3D printer4 [43]. I would provide three

counterarguments: that people who want to make precision parts will find a way to;

buying weapons is still very easy (at least in the US); and limiting a country’s access

to precision manufacturing is going to damage national security much more in the

long run. I believe that it is the technology paired with the person and their intent

that we must be concerned with when creating legislation. Not having the infrastruc-

ture for widespread access to precision and complexity in manufacturing is ultimately

a dangerous state of affairs.

4Many more of the arguments on the 3D printed gun debate centered around whether or not
CAD files could be considered protected speech, and a government takedown notice for the design
of the 3D printed gun Liberator was in violation of the First Amendment. In response, bills were
introduced which would incriminate the act of printing a gun instead. Unfortunately, these kinds of
regulations are all but unenforceable.
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Chapter 6

Object-Oriented Hardware

Our approach to networked controls, software interfaces, and mechanical machine

components all have modularity in common. The layers of machine building shown in

Table 6.1 are covered by the example implementations described by the previous three

chapters. An approach could be to continue tightening up these implementations and

to try to make them general and universal.

Machine Layer Example implementations

End effector spindle, knife, laser, extruder
Mechanical system rack and pinion, guide shafts, rails
Sensors, actuators motors, hydraulics, encoders, end stops
Control system pygestalt nodes, g-code interpreter
Applications, interfaces CAM software, machine controlller

Table 6.1: Interconnected systems needed for machine design.

In developing this research, I have been deeply influenced by thinking that has gone

into network design, including the Open Systems Interconnect Model (referenced in

Chapter 4 for the need to put virtual machines into their own layer). However,
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the OSI model was eventually somewhat of a failure, with the layers 5 (session), 6

(presentation), and 7 (application) being only theoretically distinguished between.

(These three layers are, for example, lumped together the Internet protocol suite

(TCP/IP) as application [22].)

While a clean separation between layers would make it much easier to develop layer-

specific implementations and swap them out with improvements and modifications, in

reality there are many things that can only superficially be developed independently.

For example, the actuators of a machine need to be specified such that they can

handle the loads that the end effectors and mechanical system impose. Each of the

layers described in Table 6.1 is independently a very well established field, but the

system integration is where most machine developement turns sour.

In thinking about the rapid-turn production of application-appropriate machines,

with a careful eye cast specifically on system integration, I have come to the conclu-

sion that incremental improvements on the techniques we use for machine design are

insufficient. The pre-specified layers above impede our ability to provide infrastruc-

ture for unanticipated applications. Therefore, in this chapter I describe attributes

for a machine design paradigm called object-oriented hardware, with which I aim to

mitigate some of these issues.

6.1 Embodied Objects

In Sutherland’s dissertation on Sketchpad, he uses the terminology ‘master’, ‘object’

and ‘instance’ to refer to different components of graphical design. This kind of

object-oriented thinking was further developed by Alan Kay (who was a colleague
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of Sutherland’s at the University of Utah) and colleagues into the object-oriented

programming paradigm that the language Smalltalk was based on [30].

A smalltalk object:

• has state, which contains references to other objects (in smalltalk, booleans or

integers are also objects)

• can receive messages, both from itself and other objects

• can send messages in the course of processing a received message.

These attributes were generalised in later programming languages into objects having

data stored in object attributes, and code, stored in functions.

A mechanical machine module paired with a networked control node, such as those

described in Chapter 5, has state in the form of position, methods in the form of

moves that can be executed, and a physical embodiment that can be connected to

other modules. A mods module, such as described in Chapter 4, has state in the form

of fields, methods in the form of functions, and an embodiment that can be connected

to other modules in the mods message passing framework. Mechanical modules can

be connected to other mechanical modules. Mods modules can be connected to other

mods modules. But more importantly, a mods module can also be connected to a

mechanical module.

All of these machine objects are peers, despite what machine building application

layer they belong to. Instead of thinking about machines as a system integration

project between different distinct layers of implementation, I propose we think of

machines as a collection of such objects.
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Object-oriented hardware is an extension of the object-oriented paradigm back into

physical space1. Instead of thinking about developing particular machines, we can

think about developing machine instantiations, where each instantiation is denoted

by the objects it uses.

6.2 End-to-End Machine Design

The widely influential paper on internet architecture End-to-end arguments in system

design provided a set of arguments for implementing functionality at the endpoints of

a communications system [71]. The primary example given was of assuring accurate

and reliable transfer of information through a network. If any network subsystem

attempted to do an intermediate data verification, the data could be corrupted after

the subsystem check and still arrive corrrupted at its destination. The paper argues

specifically for not implementing any functionality within the network if not strictly

necessary, arguing that this will:

• reduce the complexity of the core network, making upgrading the network later

easier

• make the network more general, in anticipation of unexpected applications

which might run on the network

• increase the reliability of the network, as applications do not have to rely on

application-specific implementations in the network to function correctly.

1The metaphor deployed by Object-Oriented Programming was that of objects in physical space
interacting, so it seems now particularly fitting to unite the two realities
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These design principles have served the internet well for the implementation of appli-

cations such as the World Wide Web and email (they are being called into question

now that the internet is ridden with more demanding applications with service differ-

entiation and a general untrustworthiness of infrastructure [6], but this aside). Are

there lessons to be learned here for implementing machines instantiations as well?

The internet is implemented on very heterogenous infrastructure, yet manages to

provide end-user functionality in a reliable fashion [82]. How can we apply what was

learned in network engineering to machine building?

I believe that up until now, machines themselves have largely been considered infras-

tructure, and the things that were made on those machines were considered applica-

tions. Instead, I believe that machines together with their output are the applications.

The infrastructure consists of objects that can be employed to make machines. I pro-

pose to call this paradigm of machines as applications end-to-end machine design.

End-to-end machine design implements the functionality of the machine as much

as possible in the end points of the machine network. If we analyse machine tools

historically, the end points are often design intent, codified by a CAD file, and material

forming, executed by a general purpose CNC tool. However, if the purpose of a

machine is to, for example, repeatedly stamp the surface of metal sheets with the

same design, the end points might be the stamp design and the feed rate of the

metal sheets. Instead of creating a machine that implements as many applications

as possible, end-to-end machine design research focusses on building object-oriented

hardware as infrastructure and making machine instantiations as applications.

In the future, we could ideally produce an adequate machine instantiation from high

level instructions. By using objects as in object-oriented hardware, it would become
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easier for the machine to:

• reconfigure if process requirements change

• automatically discover errors and then automatically solve problems

• (and therefore) support new and unanticipated applications

To take this thought a step further, I’ll sketch a future scenario for making machines

that make:

Imagine a designer beginning to design a product’s geometries, sub-assemblies, and

materials. Each time a new feature is added to the design, a simulation of a machine

that would output the product is shown in real time. As the design is developed, the

machine evolves as well.

In the process, the simulation of the machine can show the designer details about

the complexity of the machine required to output the design. These constraints of

production (including rigid body simulation of the machine, modelling of the materials

and processes, and many other things that need to be sped up from their current states

to make this a reality) can thus be combined with end-user intent.

This scenario is still science fiction2. But exposing functionality to the end-user is

something that is currently poorly done, and will continue to be poorly done no

matter how many incremental improvements we make to our current machine design

paradigm.

2But I would argue not the science fiction of “the perpetually impatient and somehow perpetually
unworldly futurist, seeing his model going terminally wrong in the hands of the less clever, the less
evolved”, but a fiction that places technological capacity in the hands of the tool-users, and involves
all in the further development of infrastructures and their narratives [27].
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I argue that employing object-oriented hardware in end-to-end machine design will

make it easier to rapidly create machine instantiations. To test this, I have reduced

some of the infrastructures for machine objects to practice (networked controls, work-

flow composition software, and mechanical modules) and tested them with a broad

base of participants. The results of this experiment are described in the next chapter.
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Chapter 7

Cardboad Machine Construction

Kits

The linear and rotary modules described in Chapter 5, together with the networked

controls and software described before them, simplify assembling machines for au-

tomation. However, these technologies are not universally available. While their

designs are freely available, they require access to manufacturing tools and manufac-

turing expertise. To test if object-oriented hardware simplifies rapidly prototyping

rapid prototyping machines, we need to test their use with many more users. To be

accessible to more users, we need to have a deployable design. Rather than mass-

manufacturing the electronics and stages we described in the previous chapter, we

sought to make the modules more accessible in other ways. We wanted an easy to

make, easy to modify, easy to use, low cost version of the modules we had. To do

this, we developed cardboard versions of the linear and rotary modules to be used

with the PyGestalt stepper boards.
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Figure 7-1: Linear stages made out of cardboard. They use nylon bushings, alu-
minium tube guide shafts, and stepper motors with integrated lead screws. They
have 30cm of travel and three standard coupling configurations.

Cardboard is a very democratic material—everyone knows how to modify it. Tools

for cardboard construction can be as simple as a pair of scissors and some glue. Mak-

ing machines out of cardboard builds an affordance for modification into the machine

itself. Furthermore, cardboard is globally available and globally inexpensive. Due to

corrugated cardboard’s ubiquitous use as a packaging material, it is readily available

even in the most remote locales. Finally, cardboard is a strong and lightweight mate-

rial. Its popular use as a packaging material is due to it being resistant to abrasion,

impact, and crushing while not adding much weight to shipped goods.

To make sure machine builders also had access to the same control system and soft-

ware we used, we wrote extensive documentation, example code, and tutorials. The

development of all of these systems was already open-source and freely available on-

line, but without adequate documentation, the source files would be effectively useless.
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We learned from the difficulties people had reproducing the MTM Snap—which often

involved a lack of details that might be obvious to people who already have domain

expertise, but not to the intended audience of the design. To avoid this we docu-

mented the kit extensively during development, focusing not only on how we made it

but also on why we made the design decisions we did.

To introduce the cardboard construction kits, we taught a series of machine building

workshops1. Others groups subsequently taught the curriculum using the same lec-

ture notes and kit materials. The workshops combined resulted in several hundred

machines.

7.1 Cardboard Machine Modules

Laminating corrugated cardboard in layers significantly increases its stiffness. This

is well exploited in the design of packaging and signage. The stiffness can be further

improved by alternating the rotations of the corrugations.

The cardboard stages’ bodies are made up out of 2-3 layers of corrugated cardboard,

glued together with wood glue. For the stages we specifically used the coloured

cardboard that is sold as tri-fold poster presentation displays for science fairs. This

cardboard is painted, which slightly improves its susceptibility to water. One linear

cardboard stage is made out of one tri-fold poster board, or approximately 12 square

feet of cardboard.
1The workshops on machine building with cardboard construction kits were partially inspired by

a workshop I ran with Ilan Moyer at the Fab10 conference in Barcelona. The Barcelona workshop
was on prototyping machines using foamcore and a petting zoo of hardware parts. In three days,
workshop participants were able to make almost-working machines, which I believe was especially
enabled by the constant, enthusiastic, and penalty-free modification of the foam core structures.
Subsequent workshops I taught with James Coleman provided a baseline working machine element
for iterating upon, so that all participants could make at least something that worked.
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The stage parts are cut using a laser cutter. They could also be cut with a blade, but

using a laser cutter is speedy and avoids crushing the cardboard while cutting. To

ensure the accuracy of the folds, we pre-scored all the folds in the laser cutter as well.

The scoring cuts through the first layer of cardboard including part of the corruga-

tions. This ensures the fold stays consistent through the length of the cardboard.

Figure 7-2: The parts for making the linear cardboard machine monomers, including
bushings, guide shafts, stepper motor, control nodes, cabling, and power supply.

The cut files for the linear stages are parametrically designed in Rhino with Grasshop-

per. Users can vary the thickness of the cardboard they use, the width, and length of

the stages, and export the cut files as DXFs. We also provided a reference cut file as

a DXF for users who were using the tri-fold cardboard in the BOM, or who perhaps

did not have access to Rhino software. The reference design is meant to be cut with

a whole 36x24” sheet at once, but we also included dovetail cuts, breaking up the

parts for users who have smaller laser cutters.
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description quantity total price
Tri-fold Poster Cardboard 1 4.16
Nylon bearing, flanged, 3/8” ID 4 2.93
Aluminium tube, 3/8” OD 4’ 9.26
Stepper motor nema17 30cm leadscrew, w/nut 1 27.45
M3 fasteners 12mm 3 .30
M3 fasteners 8mm 4 .40
M3 locknuts 3 .30
Gestalt stepper motor board 1 15.20
total 60.00

Table 7.1: Bill of materials for a cardboard linear stage module. A more detailed BOM
with vendor information and part numbers is kept up-to-date at mtm.cba.mit.edu.
This BOM includes the electronics for the stage. To run the stage (or a number of
them), the user also needs a USB to Rs-485 cable and a power supply.

For the bill of materials, we limited the number of parts to eight line items (see Table

7.1). Having a short BOM makes sourcing the required material significantly easier.

To achieve a short BOM, we used a stepper motor with an integrated leadscrew.

These are available off the shelf, but with variations and unreliable stock levels. To

accommodate the number of workshops we anticipated running, we placed a custom

order for stepper motors through AQS Inc. in Dongguan, China. We ordered bipolar

NEMA 17 1.8 degree stepper motors, 6VDC, 6ohms, 37g.cm2, 1A, 12mH, with a

4-start lead screw and 2mm pitch (TR8x8), with an ABS wear-compensating lead

screw nut. More details on sourcing are given in appendix D. The lead time for the

motors was about three weeks, and the cost per motor was under 28 dollars, and

the minimum order quantity was 10 motors. For comparison, a wear-compensating

lead screw nut alone from McMaster-Carr is 32 dollars, and an integrated lead screw

motor we had quoted from an Connecticut based motor manufacturer was 140 dollars

per motor without nuts, with a lead time of 12 weeks and a minimum order of 30

units. If we used an off-the-shelf lead screw and couplings to connect to the motor,

97

mtm.cba.mit.edu


we’d need a helical coupling on the motor side, and to restrict axial motion on the

lead screw, shaft couplings and thrust bearings on the idler side. In total there would

a total of seven more line items, with an estimated cost of at least 100 USD.

Sourcing materials is a delicate optimisation task, balancing value, availablity, and

design intent. Sourcing materials for open source hardware projects is compoundingly

difficult because the projects need to be reproducable by many different kinds of users

with access to different markets. Some guidelines for how to build a BOM for an open

source hardware project we have are:

• Re-orderable (not end-of-life, vendor without membership requirements)

• Re-placeable (provide sufficient detail so that a replacement can be identified)

• Re-usable (take advantage of existing economies of scale)

You can get stepper motors for free by harvesting them out of discarded inkjet printers

or other e-waste. But the design will not be reproducible. Certain hardware parts

sold by clearing house vendors might be cheaper, but they will not be available in the

long term. Using parts that are standards or used in mass-produced goods (such as

Formlabs using a BlueRay laser for curing resin in their SLA printers) lowers the risk

of the part you are using becoming irreplaceable.

Like the metal versions of the linear stages, the cardboard stages are intended to be

coupled in a variety of standard positions. To make this even easier, we included

tabs on the motion platforms and corresponding slots on the backs and sides of the

stages. These allow the stages to be stacked like Legos for a first motion configuration

without needing any glue or tape.
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The cardboard we use can handle loads of 200 pounds per square foot. The part

of the cardboard that the leadscrew is attached to is approximately a square inch,

and thus we can expect the cardboard stages to move loads of around one pound

without deflection and backlash. This way we can still achieve high precision in

motion without using an expensive material.

Figure 7-3: Assembly of the rotary stages, which use MXL timing belts, a nylon
bushing as an axle, nylon ball bearings, and stepper motor.

The rotary stages use the same cardboard as the linear stages, but instead of a lead

screw they use a timing belt and drive pulley as their drive train. The other parts

are familiar—nylon bushing, NEMA 17 stepper motor. In the BOM for the rotary

stage, we included a platform gear that needs to be 3D printed by the user. The print

is simple and can be done on an inexpensive consumer 3D printer. A version was

done in laser cut cardboard but was less robust and wore out quickly. This reference

design for a rotary stage was added after many of the workshops described in the

next sections were completed. Therefore, many of the machines developed in the wild
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include custom rotary stage designs.

7.2 Assembly Instructions and Documentation

The documentation, assembly instructions, BOMs, design files, and source code are all

linked to from http://mtm.cba.mit.edu. The first page provides an overview of the

sub-modules and examples, with more detailed pages for each. The documentation

includes step-by-step instructions for installing and running the software, the wiring

of the control boards, the assembly of the cardboard stages, and full code for example

projects to get started with.

Figure 7-4: In the documentation, we tried to make system integration for the ma-
chines as clear as possible so participants could focus on their customisation instead
of debugging communication.

Many of the source files are maintained on the website github.com, which also pro-

vides users with a venue to report bugs, fork designs, and participate in new iterations.
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Because of this avenue of contact, we have been able to incorporate feedback on errors

in the BOM, developed design iterations for people with smaller laser cutters, and

clarify details.

Figure 7-5: Assembly instructions we developed includes animated GIFs to explain
how to assemble the parts.

System integration is one of the most important aspects of machine bulding. A

working machine needs a viable software interface, a control system, and a mechanical

structure. Without one of those parts, the whole machine is useless. In software

engineering, it is easy to write a short test program and run it and then continue

building on it. In machine design the approach has historically been for engineers

to spend a long time perfecting a design, then begin prototyping after much of the

design is complete. This takes a long time, does not leave much room for error,

and makes mistakes much more costly. We instead encouraged machine builders to

make the minimal viable machine they needed—including all subsystems—first. This
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means iterations happen much faster, and potential issues with system integration

are identified early on.

We also provide some documentation on how to build the next iteration of the min-

imum viable machines, including material iterations, different types of hardware,

different types of controls, or different kinds of software interfaces. Because of the

modularity of the system, any component can be swapped out without affecting the

rest of the machine’s functionality. In particular, we encourage reusing the drive

train hardware (motors, bearings) and redesigning the machine frame either in form

or material to better suit the application.

Figure 7-6: Schematic wiring for the PyGestalt nodes.

For the assembly instructions and wiring, we included animations and videos in the

documentation. Some frames from an animated GIF explaining the linear stage con-
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struction are depicted in Figure 7-5. Animations are much more interesting than

step-by-step instructions for the participants, and are also less tedious for us to make.

Instead of only using photographic documentation, we used many schematic depic-

tions of the hardware. Figure 7-6 shows schematic representations of the wiring. Here

a schematic clearly points out details that otherwise might be overlooked, such as the

orientation of the connectors.

7.3 Machine Building Workshops

Figure 7-7: MAS.863 How to make (almost) anything machine building workshops.

We taught a series of machine building workshops in person using the cardboard ma-

chine module designs. Two of the workshops were taught as part of the grad/undergrad
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digital fabrication class How to make (almost) anything, with 60 students per work-

shop working in teams of 15. During those workshops, students came to a one-hour

lecture, one-hour of lab demonstration, and had eight hours of lab time to work on

their machines. Another workshop was taught during the computer graphics confer-

ence SIGGRAPH to 30 participants in one four-hour slot [61]. Finally, we taught a

series of four one and a half day workshops at the MARMC naval base to five sailors

at time. See also Table 7.2.

Workshop Participants Duration Instruction time Machines built
HTMAA 1 60 10hrs 3hrs 4
HTMAA 2 60 10hrs 3hrs 4
SIGGRAPH 30 3hrs 3hrs 5
MARMC 4x5 3hrs 3hrs 4x1

Table 7.2: Machine building workshops held with the cardboard construction kits.

The first part of the workshops consisted of a tour through machine design: tool

heads, control systems, actuators and sensors, kinematics, mechanical systems, and

applications/interfaces. We analysed examples of digital fabrication machines com-

monly found in Fab Labs and explained the machine design choices that were made.

Why use a timing belt instead of a lead screw? What speed we can expect to mill

at? What are the benefits of enclosures versus open machines?2 How do machine

control systems work? How do their software interfaces work? Where can we make

improvements?

After a basic overview of machine design and machine building, we narrated the

documentation we made for assembling the cardboard stages, wiring the PyGestalt

nodes, and running the VMs. We distributed parts, including cardboard and guide

shafts, but encouraged the participants to also look for other materials for their

2Hint: lasers and eyes are a bad combination.
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Figure 7-8: Machines built by HTMAA students: long exposure by the Harvard
section; laser show by the Center for Bits and Atoms section; a mechanical turk chess-
playing table by the architecture section; a painting machine by the International
Design Center section.
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machine building.

For the How to make (almost) anything workshops, the lab demonstration consisted

of building four linear stages in teams. This was to ensure the toolchain was work-

ing on their own laptops without necessarily engaging in an machine design work.

This included us being present through laser-cutting, gluing, and wiring. In the SIG-

GRAPH and MARMC workshops we also assisted during the follow-up; for HTMAA

the participants had eight lab hours to design and complete a custom machine on

their own. Because of the large number of participants in the HTMAA workshops,

the teams were able to assign semi-experts to each of the different subcomponents

and develop relatively complex machines. In the other workshops, there was more

involvement from all participants throughout the machine building.

The machines for the first How to make (almost) anything workshop are shown in

Figure 7-8. Because the first (minimally viable) machines were finished during the

lab section, the remaining eight hours could be used to develop the machine-specific

application. The architecture section built a chess table and developed a chess-playing

app that generated the moves. They did a series of careful motion studies to prevent

magnets from interfering with each other.

Due to a shortage of time and no access to a laser cutter during the SIGGRAPH

workshop [61], we pre-cut almost all the cardboard parts for the machines ahead of

time. The participants assembled the machines and used end effectors we already

had. The participants in this workshop were most interested in developing different

software workflows for toolpathing, and spent some time after the workshop writing

scripts to send different kinds of commands to the machines.

The MARMC workshop participants had little to no prior experience in program-
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Figure 7-9: Above: a cardboard pen plotter built with 4 linear cardboard axes at
MARMC shipyard. Below: A rapid iteration turning a plotting machine into a milling
machine at MARMC shipyard.
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ming, digital design, or digital fabrication. The workshop was taught in the newly

installed fab lab that they had put on the base to provide enrichment and education

for the sailors stationed there. During the workshop, the sailors all initially built the

same machine—a plotter that used four linear axes (see Figure 7-9). After building

the machine, they were challenged to improve it. Most groups provided structural im-

provement to the machines, but one group decided turning the plotter into a milling

machine would be a marked improvement (see Figure 7-9).

At each of these workshops, the participants were able to successfully make a machine.

Over the course of a few hours they designed machines, built mechanical components,

built wiring, wrote software, and performed system integration. Because the network

of machine objects was relatively simple, the participants could focus on developing

their machine-specific applications. This led to a full mechanical turk robot in one

workshop and to modifying a plotter to be a milling machine in another. I believe that

without the focus on end-to-end principles for machine design, it would have been

much more difficult for machine building novices to focus so much on the specialisation

of their machines.

7.4 Modular Machines in the Wild

Besides the workshops we were available for in person, there were other sites testing

the machine building infrastructure we developed. Most notably, these kits were used

in the 2015 and 2016 Fab Academy cycles, with 220 students participating at 54

sites and 264 students participating at 75 sites respectively. Not all students or labs

participated in the machine building exercise, but those who did built a total of 125

machines.
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Not only Fab Academy students built machines. The designs for cardboard stages

and stepper motor nodes were being downloaded and built by other people as well.

Examples include a group of high school students, engineering professionals branching

out into making, and an undergraduate class at an engineering university. However,

I will focus my analysis on the machines developed in Fab Academy. The class

archive http://archive.fabacademy.org (accessed June 2016) and the students’

documentation of their projects are well suited for studying.

To get Fab Academy labs access to items from the bill of materials at low cost, the

Fab Foundation compiled pre-orders from labs for PyGestalt stepper nodes, guide

shafts and bushings, RS-485 cables, and motors with integrated leadscrews (see also

the BOM in Table 7.1). Fifty labs ordered parts through Fab Foundation in 2015;

40 labs ordered parts in 2016. The kits were reused year to year, so the decrease in

orders does not reflect a decrease in availability to participants. Of the remaining labs,

some sourced the same parts themselves (including ordering the PyGestalt boards and

stuffing them themselves, as in Fablab HRW), and some built machines with different

hardware components altogether.

Table 7.3 catalogues the wide variety in machines built by workshop participants.

Some familiar machine types were developed including milling machines, laser cut-

ters, 3D scanners, lathes, and 3D printers. However, there were also many application-

specific machines, including seed planting machines, cocktail mixing machines, petridish

agitating machines, or machines made for gameplay.

The cardboard for machine building needed to be sourced and cut locally. This was

straightforward for most labs and cardboard was broadly used. Limitations were

encountered with small laser cutters and with widely varying cardboard thicknesses.
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Figure 7-10: A cardboard CNC tube cutter designed by Fab Lab Tec-
sup students Fabio Ibarra, Gabriela Mojoli, Jesús Valencia, Roosvelth
Cántaro, and Jorge Valcárcel. The machine uses a rotary axis to spin
a tube, and a mill with two degrees of freedom to make precise cuts.
Documentation available at http://archive.fabacademy.org/archives/2016/

fablabtecsup/students/machinedesign/index.html, accessed June 2016.
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Type of machine Number of machines observed
Plotters/drawing/painting machines 25
Hot wire cutting machines 8
3D Scanners or Animation Machines 4
Laser cutters 4
Mills or lathes 12
3D printers 2
Biology lab equipment 7
Robotic arms and 5+ DoF machines 5
Music making machines 6
Arcade game machines 5
Food preparation 18
Agricultural or solar machines 5
Sand gardening machines 2
Interactive displays 12
Other machines 10
Total 125

Table 7.3: Machine types that were made as part of the Fab Academy machine
building projects.

We believe it was partially due to these constraints that only 48 of the 125 machines

were made predominantly out of cardboard. But using cardboard also has aesthetic

considerations—more students than we anticipated objected to using such a ‘maker’

material, and wanted instead to go for something that seemed more like ‘real engi-

neering’. Some groups opted for a combination of 3D printed parts and acrylic sheet.

This aesthetic visually indicates more engineering legitimacy, but I suspect that those

machines would be comparable in stiffness to a laminated cardboard construction. A

similar design decision was made by Makerbot Industries when they released the

Replicator 2 in 2012. They opted for aluminium body painted black instead of the

earlier machine’s plywood constructions. These examples further show how the ten-

sion between ‘making’ and ‘engineering’ plays out in many different contexts and

situations.
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Figure 7-11: Plotters made in the wild using the machine building construction kit.
The plotters on the left are by Fablab Montreal (top) and Fablab Tainan (bottom) and
follow a fairly straightforward method for designing machine kinematics. The polar
plotter ‘Mandala Machine’ and the tendon based parallel manipulator on the right
by Fablab Reykjavik and Fablab HRW, respectively, use more complex kinematics.
All four use the PyGestalt stepper boards for distributed controls (with Fablab HRW
having sourced and stuffed the boards themselves). Twenty-five plotters or painting
machines were made in total, making it the most popular machine category.
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Figure 7-12: Modular hot wire cutting machines. Clockwise from top left, a four-DoF
hot wire cutter (including rotating platform) by Fablab Puebla, a hot wire cutter by
Fablab Waag Amsterdam, a three-DoF machine by Fablab Singapore Polytechnic, a
hot wire cutter by Fablab Barcelona, results from a hot wire cutter at the Tecsup
Fablab in Peru, and finally, a hot wire cutter by the Gregory School Fablab in Tuscon,
AZ.
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A cardboard milling machine for PVC tubing was developed by Fab Lab Tecsup

(shown in Figure 7-10). It is an excellent example of a custom digital fabrication ma-

chine: it shows a functionality that is difficult to accomplish by hand (cutting complex

geometries into tubes) without making an overly complex or expensive machine. It

has a custom software interface (also shown in Figure 7-10) and controls a total of

three degrees of freedom. As a tool, it provides functionality at an appropriate scale.

Many sites developed drawing machines or painting machines, such as the examples

shown in Figure 7-11. A pen is a passive end effector; it requires no additional

controls. Similarly, hot wire cutters can also be developed without additional end

effector control and were a popular application. Figure 7-12 shows several examples.

To make it easier to design a new type of control board in the future, we plan to release

template designs for the nodes. we have already provided one design for a 3D printer

extruder node, but unfortunately it uses a part that has since been discontinued by

the manufacturer.

Unlike developing new control boards, using more of the existing stepper motor

PyGestalt control boards appeared to be relatively simple for the participants. There

was not a vast preference for working with machines with fewer degrees of freedom.

In fact, four degrees of freedom was quite common, and several machines used five or

more. The cost jump that exists in industrial machines in going from three to five

degrees of freedom did not apply here. Participants added fourth and fifth degrees of

freedom without much concern.

A popular general area of application of custom machines was food handling. Three

separate labs made pancake making machines. Frosting extrusion was another cele-

brated application. Most of the frosting extrusion machines used syringes, but in one
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of the original How to make (almost) anything workshops a group developed a “sub-

tractive cake decoration machine,” where the end effector was a silicone model of one

of the participants tongues. Many of the food processing machines were developed

by Fab Labs in Japan—two from Kitakagaya, and two from Hamamatsu.

The majority of the machines produced were somewhat difficult to classify. A few

examples include a target practice machine, a delta-bot foot massaging machine, a

bleach application machine, and a photo paper handling machine. Two separate

labs developed Zen sand gardening machines (see Figure 7-14); one machine injected

bubble wrap bubbles with paint (also in Figure 7-14). Many of these machines may

seem somewhat frivolous. I would argue that if it becomes so easy to make a machine

that you can apply the precision of computer control to frivolous applications, we are

succeeding in our goal of making rapid prototyping of rapid prototyping machines a

reality.

The informally organised community of machine builders made several valuable con-

tributions back to the project. There was a great deal of additional documentation

written by the participants, including step-by-step software installation guides, de-

tails for running the software on Windows, details for how to source parts in China,

and videos with more detail on how to connect different parts mechanically. Addi-

tional documentation was also written for the PyGestalt source code, explaining the

architecture of the library in one document.

Other contributions included circuit board design and software development. Bas

Withagen developed a Fabnet RS-485 connector board that is easier to make cabling

for (see Figure 7-16). Massimo Menichinelli contributed wxGestalt, a GUI for auto-

matically generating PyGestalt virtual machines. In wxGestalt, the user selects the
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Figure 7-13: Many machines dealt with some aspect of food preparation. For example,
clockwise from top left: a ketchup printer from Fablab Kitakagaya; a pancake printer
from CITC Fablab Alaska; a pizza cutter from Fablab Barcelona; a vegetable peeler
from Fablab Sendai; a cookie froster from AS220; a chocolate printer from Fablab
Trivandrum; a vegetable cutter from Fablab Hamamatsu.
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Figure 7-14: Miscellaneous machines include machines for music playing and sand
gardening. From top to bottom: the Pluribot bubble wrap cell injecting machine, by
Fablab Torino; and detail of the syringe; Zen gardening machine by Fablab Opendot;
another machine-controlled sand garden, this one by Lorain County Community Col-
lege Fablab; a guitar-playing machine by Fablab Oulu; a windchime playing machine
also by LCCC Fablab.
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Figure 7-15: Cyclops: a machine that uses augmented reality markers for position-
ing. Cyclops was developed by Alejandro Escario-Mendez at Fablab Madrid. Addi-
tional documentation is available at http://fabacademy.org/archives/2015/eu/

students/escario_mendez.alejandro/cyclops.html (accessed July 2016).
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Figure 7-16: User contributions to the machine building infrastructures. On the top,
additional documentation developed for PyGestalt boards, including an alternate de-
sign for the RS-485 fabnet interface board. Below, wxGestalt, a GUI for automatically
generating VMs using the PyGestalt library.
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number of nodes, the serial port, and details on the communication settings. The

program guides the user through the process of assigning the nodes IDs (which in-

volves pressing their physical buttons during a discovery mode). Once the VM is

generated, wxGestalt also provides a template for creating a graphical interface to

that machine (built in wx). These contributions build up an ecosystem of support

for building machines.

The workshops that we taught have since been replicated by others. The Fab Foundation—

with the TIES foundation—has adapted a version of the workshop we taught at

MARMC for continued use. The workshops are being taught by instructors who have

participated in the Fab Academy machine building sessions.

There are machine builders using these object-oriented hardware components who are

contributing to machine building research. For example, Alejandro Escario-Mendez

developed a machine called Cyclops, which uses augmented reality markers to de-

termine machine position (See Figure 7-15). This allows for closed-loop control in

positioning. Closed-loop control is typically considered an expensive addition, but

Cyclops suggests that one could retrofit machines with closed loop control using a

few stickers and a webcam. This kind of layered but interconnected development

makes machine building more accessible and introduces new possibilities.

Overall, I was very impressed by the breadth, creativity, and complexity of the ma-

chines developed. I was struck by the ease with which people added degrees of free-

dom, position control, and other machine attributes that historically have been con-

sidered complicated. I was impressed by the contributions made by machine builders

to the respective infrastructures they were using. I also learned more about what kinds

of contributions are difficult for novices to make—designing new control boards, for
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example. Having previously taught machine building workshops with kits such as the

Ultimaker or MTM Snap, I was impressed by the success rate. There were only two

labs who ordered kit parts and did not make a functioning machine with them.

Cardboard machines are not going to replace everything in manufacturing and fab-

rication. But the object-oriented hardware parts certainly made it easier to build

more machines more quickly. None of the machines that was built was optimal. But

this proliferation of machines shows that this approach is a step towards much more

accessible rapid prototyping of rapid prototyping machines.
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Chapter 8

Conclusions

At the start of this research trajectory, I thought I was designing machines (such

as the MTM Snap or Popfab). I realise now that this is the wrong order. Instead

of designing machines, we need to be able to design processes. Processes employ

machines that are application specific. To make these machines, we need overarching

infrastructure for machine design. To make this infrastructure and its standards

relevant, it needs to be unprecedently accessible.

I presented both object-oriented hardware and end-to-end machine design as con-

ceptual frameworks and design principles for process development. Object-oriented

hardware considers a machine an assemblage of objects that make up a machine in-

stantiation. Developing classes of these objects are contributions to machine building

infrastructure. These objects include networked controllers, or mechanical motion

components, or software modules. These objects are readily reuseable, reconfig-

urable, and extensile. End-to-end machine design principles argue for developing the

application-specific components of the machines at the edges of the machine network,
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instead of implementing application-specific functionality in the machine’s subcom-

ponents. This allows machine infrastructure (such as networked controls, software

modules, or mechanical motion components) to be more general and usable in new,

unanticipated applications. It makes the machine infrastructure (its objects) more

reliable as they are tested and redeveloped. It reduces the complexity of the core

functions (such as motion) shared by most machines.

To test these principles, I developed and deployed (hardware, software, and inbe-

tween) objects for machine design. These were successfully used in a series of struc-

tured workshops and in the wild to develop many different kinds of application-specific

machines. Novice machine builders built more than two hundred distinct machines,

some of which I have catalogued in the previous chapter. The success of these tests

underlines the potential of the frameworks I describe above.

The title of this thesis “Making Machines That Make” is routinely misheard as “Mak-

ing Machines That Make Machines”. There is an irritating futurist excitement about

the notion of making self-replicating machines, and us as the masculine gods who

create them. This work is distinctly not about that narrative. The design principles

for machine infrastructures and the implementations I have presented here are a step

towards changing how we can create products and goods, and who may create them.

Instead of machines being a tool held only by those with privileged access to the

means of production (and therefore what the machines make being things in service

of those who already hold power) these machines are accesible and are extensions of

the people who wield them.

These are tools for making machines that make anything at all.
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Chapter 9

Reflection

Another flaw in the human character is that everybody wants to build and

nobody wants to do maintenance.

Kurt Vonnegut, Hocus Pocus, 1997

There is a shop manager who works in one of MIT’s fabrication facilities. Let’s call

her Justine1. Justine can program the CNC mills, fix the bandsaw, and shovels out

the waterjet when it gets too full of garnet. Justine is comfortable in CAD/CAM

and also writes scripts when she deems there is otherwise too much mouse clicking

to be done. Justine has insight into mechanical design and material science and can

provide recommendations based on experience. Justine knows where to buy end-

mills, sheet metal, motors, and LEDs. Justine can rewire the robotic arms. Justine

is down-to-earth and helpful. Justine makes an okay wage as ‘support staff’.

People ask me all the time where they can hire someone like Justine. The problem

1Name has been changed to preserve privacy of the person in question–or more realistically so
that fancy industry partners don’t find out about our Justine and swoop in and steal her.
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is that Justines don’t exist. This Justine is a magical unicorn who for some reason

is working a job that requires all of her skills but rewards her for only very few of

them. Right now we are muddling through manfacturing the goods we need with

the few Justines we have. Companies like Apple are a stronghold for Justines—they

build fortresses of manufacturing expertise, with war chests of Justines protecting

their competitive advantages.

If we continue as we have, I think this Justine shortage is going to become a very

serious issue. Right now we throw out things that stop working. We upgrade and

replace. But this practice assumes unlimited resources on a limited planet. As we

increase our reliance on complex electromechanical products, we need to also expose

them for reconfiguration by more than just a few experts. Our collective expertise in

electromechanical products needs to grow.

One component of the work I presented here is developing skilled communities of prat-

ice. Involving people in developing the technology they use does not only transform

the technology—it transforms the people. This inclusion is not currently a common

social practice; our technological infrastructures poorly support it. But having people

develop the tools they use means more than those tools being better suited for them.

It means the people themselves are different as well. It may be a key to having more

Justines.

9.1 Interoperability Without Standardisation

The thing about standards is that none of them ever are that good for the application

you have in mind. That is of course the point; standards are meant to improve
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interoperability. But standards are often also overreaching, requiring too much of the

products that implement them. They bog things down, making them expensive and

slow.

Seeing the machine modules and controls presented here, you might think I defined

the entire playing field for end-to-end machines, and am proposing a standard. This

is not the case.

Going forward, I believe it is imperative to continue to develop systems that inter-

operate, but do not need absolute standards for communication. In the world of

webservices, access points are often clearly defined by “application programming in-

terfaces” or APIs. They denote the ways in which services can interoperate and make

it easy to make mashups of different services. This is what I’d hope to see for machine

design.

9.2 Object-Oriented Manufacturing

Learning from the abstractions of object-oriented programming, I developed tech-

nologies that implement some of the interconnect and interoperability you’d expect

from an object-oriented system for machine design. I demonstrated the paradigm

works well with these technologies as a method for rapidly constructing small scale

automation systems. But what happens next?

Building machines involves a lot of legwork. To build machines you need to source

material, find parts, check tolerances, and test functionality. That involves dealing

with marketplaces, supply chains, and inventory. Even once you find the parts you

need, you need to deal with shipping, lead times, and mark ups. Once you start
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manufacturing and the system is set up, it is not necessarily clear why one machinist’s

parts come out better than another’s. Process control and quality fade are complex

manufacturing problems that have no simple solutions.

A main driving force of this work has been the ablity to manufacture in low volume

without loss of precision or complexity. To do so, I argue you need access to custom

digital fabrication tools. The automation of digital fabrication enables repeatability

and accuracy; the customisation of those tools enables widespread applicability.

To actually produce goods in low volume, machines are not the only part that needs

to be more accessible and robust. Making machines easier to make and to use could

also further lower the margins on mass-manufacturing. Supply chains, quality control,

and system integration also need to become accessible to low volume production. The

overhead charges levied on small orders make low-volume production inaccessibly

expensive.

The internet allows data packets to travel through very heterogenous networks to

reach their destination. Each packet contains its addressing and details about its

payload. But the same design file used on different machines will produce different

parts. We lack an infrastructure as general as the internet for manufacturing.

Perhaps a next step to take is to consider something like Object-Oriented Manu-

facturing. What would it mean to make a formal language for supply chains? Or

standard methods for quality control? What are elements that could be standardised

further?

• Distributed manufacturing—many manufacturers can respond to the same order
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• Product component layers with interconnectivity specifications—manufacturers

can easily make parts that work together

• Security, quality control, and verifiability—enables a quick start

Manufacturing is unlike the Internet in that creating or destroying a packet has a cost.

While we can learn from history of the digital, implementation difficulties abound in

the physical. These provide a fertile foundation for future work.
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Appendix A

Design files

In the digital version of this dissertation, the design files below are provided as vector

drawings that can be imported into CAD or CAM software. The board files are also

vector graphics. These files are also available in their original formats at

http://mtm.cba.mit.edu.

As with the rest of this document, this work may be reproduced, modified, distributed,

performed, and displayed for any purpose, but must acknowledge the Machines That

Make project. Copyright is retained and must be preserved. The work is provided as

is; no warranty is provided, and users accept all liability.
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Appendix B

Mods benchmarking

The mods framework for workflow composition that is detailed in Chapter 4 has

several modules built in for benchmarking the setup that is running. These include

the processing power benchmarks and connectiviity tests that are shown in Figure

B-1.

Benchmarking machine performance (such as the time from sensor read through signal

processing to motor action) is an important method for characterising their capabil-

ities. It is very easy to build benchmarking suites with the tools provided here.
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Figure B-1: Mods benchmarking modules, left for benchmarking processing power (on
this computer 1033 Mflops), right for benchmarking connectivity (here 9.8ms round
trip with the server).
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Appendix C

HDPE Snap Reuse

Figure C-1: A design for a plastic snap.

The MTM Snap is a milling machine for small items and circuit boards that is made

out of HDPE. Different iterations and instantiations are depicted in Figure C-2. It

was originally designed in 2010, with a final design iteration in 2012 which is included

in Chapter A. Like I explain in Chapter 1, the project was not exactly a success. It

was difficult for others to replicate the machine or modify it for their own purposes.

However, parts of the MTM Snap design were readily adopted by others building

rapid prototyping machines.
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Figure C-2: Many iterations and instantiations of the MTM Snap, including versions
not made of HDPE plastics.

The MTM snap was a generalisation of one of Jonathan Ward’s earlier machines

from 2009, the MTM A-Z. The A-Z was made of plywood. One of the first A-Zs

was adopted by the Mobile Fab Lab for travelling around and demonstrating making

machines with other digital fabrication machines. In the Mobile Fab Lab it was

subjected to changing weather and especially humidity conditions, which caused the

plywood to warp and the machine to bind. It used fasteners that required some finesse

in the assembly process.

Making the machine out of a material which would not warp with humidity became

a priority. We found out that HDPE was used in the restaurant industry as cutting

boards, and was therefore readily available in large quantities. Cutting boards desig-

nated for different foods were colour-coded, giving us a palette to work with as well.

To cut the plastic, we used a serrated single flute up-spiral end mill, which we ran

very slowly—30 inches/minute at 14k rpm. By cutting buckles into the HDPE, we
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Figure C-3: Examples of other digital fabrication machines built with snapped HDPE.
Clockwise from top right: the 5-axis MTM Snap by James Coleman; the Juicebot
Liquid Handler by the author, Charles Fracchia, Emzo de los Santos, and Scott
Livingston; the Additive Lathe by Yoav Shterman; detail of the 5-axis MTM Snap;
A Creepy-Crawly Fabric Cutter by Sam Calisch; and a hanging 3D printer by Ben
Peters.
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were able to assemble structures without needing fasteners or special tools.

While the MTM Snap as a machine might not have been widely replicated, the snap

structure in HDPE cutting boards was reused in many machines. Figure C-3 shows

some examples of how the snaps were used as construction techniques.

The Open Source Hardware Definition [3] is very clear about how to share stand-alone

works such as the MTM Snap. But in this case it turned out to be only a certain

process (milling plastics and fitting them together with snaps) that was useful to a

broader community. It is my hope that object-oriented hardware will make it easier

to share these kinds of small but useful machine building components.
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Appendix D

Sourcing and Supply Chain

Figure D-1: A marketplace for electronic components in Huaqiang Bei, Shenzhen.

Unlike for software, replicating designs of machines requires sourcing components

and materials for production. To be able to make the cardboard modules shown in
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Chapter 7, we needed guide shafts, bushings, fasteners, cardboard, and motors.

We would usually source our parts from off-the-shelf vendors such as McMaster-

Carr. For this project we decided to try to find a less expensive option to be able to

accommodate more machine builders. At first we tried to find them in marketplaces

in Shenzhen such as shown in Figure D-1. However, we wanted to be able to source

more reliably.

To do so, we partnered with AQS inc. in Dongguan, China for sourcing and produc-

tion. We ordered bipolar NEMA 17 1.8 degree stepper motors with a 4-start lead

screw and 2mm pitch (TR8x8) and an ABS wear-compensating lead screw nut. The

datasheet is shown on the next page.

The first order we placed for motors was for less than 20 units. While it used to be

that having parts manufactured in China required high volumes, that is no longer

entirely true. Especially with the assistance of a manufacturing partner, it become

feasible to have parts custom made at much lower volumes.

Making machines that make helps us gain access to the precision of CNC for low

volume production. To make those machines though, it is good that we also have

access to low volume production of machine parts. Thanks to AQS and Bunnie Huang

for their assistance.
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