

2012 6 / a.

HTMAA MACHINE DESIGN 25 50 Industrial Machines

Consumer machines

Personal Fabrication

Machines that Make

The Machine that make project at the MIT Center for Bits and Atoms seeks to develop low-cost machines that can be made using CNC equipment, like available in fab labs.

[m]MTM: modular machines that make

More modular machines out of prototyping materials for prototyping

Reconfigurable Stages

Reconfigurable one-axis stages for multipurpose motion.

foldafab

A deployable medium-format CNC router.

screws

Fab-In-A-Box

An entry level (under \$500) EDM machine for

making carbide/HSS tooling and/or lead

Low cost 5 axis machining.

Multi-processes lathe

The additive lathe is a 3D printer that prints on rotation objects.

Virtual Machine Network

Modular control for the MTM project.

Timing Belt MTM

A design without lead screws, reducing cost.

MtM Snap-Lock

POP Fab

A suitcase milling machine, 3d printer, and vinyl cutter.

MtM A-Z

MAKING	
MACHINES THAT	MAKE

TOOL HEAD
MECHANICAL SYSTEM
SENSORS + ACTUATORS
CONTROL SYSTEM
APPLICATIONS + INTERFACES

Machine programming and control

Machines that Make

TOOL HEAD MECHANICAL SYSTEM SENSORS + ACTUATORS CONTROL SYSTEM APPLICATIONS + INTERFACES

			Same - St.	1	1	
		SETUP: 30	IG			
	N000001 N00000100 << TOOL INFO			TOOL OFFSET		
	DEPENDING (LSR HEAD INTAKEZA);	LPS ON	COOLANT	CEONETRY	WEA	
	(SAN RACING) ;	TOOL.	POSITION	12 9837	0.	
	(POSTED FOR HAAS ES-5-41) :	1 SPINDLE	0	0	0.	
	(DATE - 02-07-10 TIME - 03.34 7 ,	2	0	0.	0.	
	(11 5FS 5/6 7 +	3	ů.	0.	0.	
	600 617 640 680 690 694 698 ;	4		0.	A.	
	600 691 628 20. ;	2		0.	0	
	600 G91 G28 X0. Y0. A0. ;	6	0	0.	0	
	(SFS 370); N100 T1 M06 :	1	0	0.	0.	
	G00 G90 G94 G54 X-4.1972 Y1.8518 B21.392	8	0	0.	0.	
	A17.186 \$3500 M03 ;	9	0	0.	0.	
	H11 ; H13 ;					
POWER ON POWER OFF	G187 P2 E0.025 ;		88848333	WORK ZER	0 OFFSE	
	20, 5025 :	G CODE	X AXIS	Y AXIS	Z AX	
	G01 Z0. 4025 F21. ;	GSZ	0.	0.	0	
	693 X-4.2251 Y1.7947 20.4262 B20.704 A17.52	654	-19,8890	-16 2096	0	
	F840. 2 ; Y-4 2500 V1 7357 70 4537 010 000 +47 00	655	-79 3963	-12 0265	0.	
	F839, 37	656	0	-13. 0305	0.	
	X-4.276 Y1.6751 20.4793 B19.273 A18 109	657	0.	0.	θ.	
	F840.78 ;	650	0.	0.	θ,	
	X-4.3014 Y1.613 Z0.5045 B18.535 A18.402	650	θ.	0.	θ.	
	X-4, 326 Y1 5493 70 5208 817 70 410 cos	659	θ.	0.	0.	
	F840.83 ;	G154 P1	θ.	0.	.0	
	X-4. 3495 Y1. 4837 Z0. 5558 817, 007 A18 949	G154 P2	θ.	0.	0	
	F039. 28 ;	G154 P3	0.	0	0.	
EMERGENCY STOP	MAIN SPINDLE FOR Commanded RPM: 3500 Actual RPM: 0 Load: 0 SPINDLE: 100X FEED: B0X RAPID: 5%	SITION: (I OR WORK 045 -4. 068 1. 077 -14. 058 3 450 2	N) JOG RATE G 54 MA 3155 -2 7428 -1 4077 -1 0.958 0.069	0.001 CHINE D 24.2045 14.4668 14.4077 30.958 49.450	0 0 0 1ST T 0. 0. -0. 12. -0	

Toolpathing

path error (pixels):

1.1

Toolpathing

Machine instructions/ post processors

Machines that Make

) (X,Y,Z,A,B,C)+

5.0 + AXIS

(**Z)**(X,Y)

2.5AXIS

G-code	Functions	G-code	F
GO	Rapid positioning	G53	Move in absolute machine coc
G1	Linear interpolation	G54 à G59	Use fixture offset 1 to 6, G59 t
G2	Clockwise circular / helical interpolation	G61	Exact Stop mode
G3	Counterclockwise circular / helical interpolation	G64	Constant Velocity mode
G4	Dwell	G73	Canned cycle - drilling - fast p
G10	Coordinate system origin setting	G80	Cancel canned cycle mode
G12	Clockwise circular pocket	G81	Canned cycle - drilling
G13	Counterclockwise circular pocket	G82	Canned cycle - drilling with dw
G15	Polar Coordinate moves in GD and G1	G83	Canned cycle - peck drilling
G16	Cancel polar Coordinate moves in GD and G1	G84	Canned cycle - right hand rigio
G17	XY plane select	G85	Canned cycle - boring, no dwe
G18	XZ plane select	G86	Canned cycle - boring, spindle
G19	YZ plane select	G87	Canned cycle - back boring (n
G20	Inch unit	G88	Canned cycle - boring, spindle
G21	Millimeter unit	G89	Canned cycle - boring, dwell, t
G28	Return machine home (parameters 5161 to 5166)	G90	Absolute distance mode
G30	Return machine home (parameters 5181 to 5186)	G91	Incremental distance mode
G28.1	Reference axis	G92	Offset coordinates and set par
G31	Straight Probe	G92.1	Reset G92 offset and paramet
G40	Cancel cutter radius compensation	G92.2	Reset G92 offset but leave par
G41	Start cutter radius compensation left	G92.3	Recall G92 from parameters
G42	Start cutter radius compensation right	G93	Inverse time feed mode
G43	Apply tool lenght offset (plus)	G94	Feed per minute mode
G49	Cancel tool lenght offset	G95	Feed per revolution mode
G50	Reset all scale factors to 1.0	G98	Initial level return after canned
G51	Set axis data input scale factors	G99	R-point level return after canne

G-code (and M-code)

unctions

ordinate system

o select a general fixture number

ullback

vell

d taping (not yet implemented) ell, feed out e stop, rapid out not yet implemented) e stop, manual out feed out rameters ter rameters ter rameters untouched

MAKING MACHINES THAT MAKE

	TOOL HEAD
	MECHANICAL SYSTEM
	SENSORS + ACTUATORS
	CONTROL SYSTEM
,	APPLICATIONS + INTERFACES

Maybe your control system is one electronic brain that interprets machine coordinates, (e.g. G-code).

Machine control box

Machine control box

Machine control network

timing belt

Different drive trains are better at different things, like timing belts are fast, racks and pinions are stiff, lead screws are strong. Some systems are cheaper, some are easier to assemble. These are all things to take into consideration for your machine!

What kind of machines do you know that use these different kinds of drive trains?

The drive trains motion needs to be restricted in the axes you want to move in. You can do this with guide shafts, tracks, cable guides, linkages, and many other ways.

Moving things

Tool force, precision, speed

 $\begin{array}{l} R = \mbox{resultant cutting force, lbf (kN)} \\ F_T = \mbox{shear force, lbf (kN)} \\ F_G = \mbox{normal to shear force, lbf (kN)} \\ F_C = \mbox{cutting force, lbf (kN)} \\ F_N = \mbox{normal to cutting force, lbf (kN)} \\ F = \mbox{friction force, lbf (kN)} \\ N = \mbox{normal to friction force, lbf (kN)} \\ t_1 = \mbox{depth of cut or feed, in. (mm)} \\ t_2 = \mbox{chip thickness, in. (mm)} \\ \theta = \mbox{shear angle, }^{\circ} \\ \beta = \mbox{friction angle, }^{\circ} \\ \alpha = \mbox{rake angle, }^{\circ} \end{array}$

lots of force?

Machining parameters

Bearings

t-slot nuts?

Laser cutting is fast, but not super precise. Aluminum extrusion is expensive, and you have to assemble each piece separately. How do you hold the frame together? Glue? Machine screws? T-slot nuts? All things to consider!

Frames

HTMAA MACHINE DESIGN Stepper motor rollers ball screw support with bearing **Ball screw** Precision guides spindle ShopBot ball screw support with bearing Desktop Q.º D2418 6

anti backlash nut

Machines

6

Finally, how are you going to control the machine? There are different kinds of software to stream machine code to machines with, how do you want yours to work? Those were some tips for making your own machines, we hope they were helpful. Now go on, cook up some machines, and have fun!

Maybe a drawing program interfaces directly to the machine

Maybe the machine is controlled from a browser...

Each section must MAKE A MACHINE!!!

The Assignment

I spent most of my time preparing for the final project. Click on the icon below to view my action plan.

The trouble

The strategy

making machines that make

[modular] Machines that Make

m[MTM] Make

1

*- *

CARDBOARD PART LAYOUT

FRAME PARTS

STAGE PARTS

Gestalt Framework

Networked nodes

Per machine:

1: stages + gestalt nodes 2: power supply + power supply/usb board **3: Virtual machine** file

NO hot plugging NO backdriving

NO drama!

Toolpathing Machines that Make

Kinematics

Virtual machine

Assignment: make your own machine w/ end effector

